Looking for reliable answers? Westonci.ca is the ultimate Q&A platform where experts share their knowledge on various topics. Experience the convenience of getting accurate answers to your questions from a dedicated community of professionals. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform.

In the following exercise, find the coordinates of the vertex for the parabola defined by the given quadratic function.

[tex]\[ f(x) = 3x^2 - 6x + 2 \][/tex]

The vertex is [tex]\(\square\)[/tex]. (Type an ordered pair.)


Sagot :

To find the vertex of the parabola defined by the quadratic function [tex]\( f(x) = 3x^2 - 6x + 2 \)[/tex], you can follow these steps:

1. Identify the coefficients of the quadratic function: [tex]\( ax^2 + bx + c \)[/tex]
In this case, the coefficients are:
- [tex]\( a = 3 \)[/tex]
- [tex]\( b = -6 \)[/tex]
- [tex]\( c = 2 \)[/tex]

2. Find the x-coordinate of the vertex:
The x-coordinate of the vertex for a quadratic function can be determined using the formula:
[tex]\[ x_{\text{vertex}} = -\frac{b}{2a} \][/tex]
Plugging in the values of [tex]\( a \)[/tex] and [tex]\( b \)[/tex]:
[tex]\[ x_{\text{vertex}} = -\frac{-6}{2 \cdot 3} = \frac{6}{6} = 1.0 \][/tex]

3. Calculate the y-coordinate of the vertex:
To find the y-coordinate, substitute [tex]\( x_{\text{vertex}} \)[/tex] back into the original quadratic function:
[tex]\[ y_{\text{vertex}} = f(x_{\text{vertex}}) = 3(1.0)^2 - 6(1.0) + 2 \][/tex]
Simplifying this expression:
[tex]\[ y_{\text{vertex}} = 3 \cdot 1 - 6 \cdot 1 + 2 = 3 - 6 + 2 = -1.0 \][/tex]

4. Combine the coordinates to form the vertex:
The vertex is an ordered pair [tex]\((x_{\text{vertex}}, y_{\text{vertex}})\)[/tex], which in this case is:
[tex]\[ (1.0, -1.0) \][/tex]

Thus, the coordinates of the vertex for the parabola defined by [tex]\( f(x) = 3x^2 - 6x + 2 \)[/tex] are:
[tex]\[ (1.0, -1.0) \][/tex]
We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. We hope our answers were useful. Return anytime for more information and answers to any other questions you have. Westonci.ca is here to provide the answers you seek. Return often for more expert solutions.