Find the best solutions to your questions at Westonci.ca, the premier Q&A platform with a community of knowledgeable experts. Discover a wealth of knowledge from professionals across various disciplines on our user-friendly Q&A platform. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields.
Sagot :
To determine the resulting function after applying the given sequence of transformations to [tex]\( f(x) = x^5 \)[/tex], follow these steps:
1. Reflect over the y-axis:
The reflection over the y-axis changes the sign of the input variable [tex]\(x\)[/tex]. Therefore, the function transforms into:
[tex]\[ g(x) = (-x)^5 \][/tex]
2. Vertically compress by [tex]\(\frac{1}{3}\)[/tex]:
A vertical compression by a factor of [tex]\(\frac{1}{3}\)[/tex] scales the function value by [tex]\(\frac{1}{3}\)[/tex]. Thus, the function becomes:
[tex]\[ h(x) = \frac{1}{3} \cdot (-x)^5 \][/tex]
3. Shift left by 1 unit:
Shifting a function to the left by 1 unit means replacing [tex]\(x\)[/tex] with [tex]\(x + 1\)[/tex]. Applying this to the function, we get:
[tex]\[ j(x) = \frac{1}{3} \cdot (-(x + 1))^5 \][/tex]
Simplifying the expression, we have:
[tex]\[ j(x) = \frac{1}{3} \cdot (-x - 1)^5 \][/tex]
After applying all these transformations, the resultant function is:
[tex]\[ f(x) = \frac{1}{3}(-x-1)^5 \][/tex]
Therefore, the correct answer is:
C. [tex]\( f(x) = \frac{1}{3}(-x-1)^5 \)[/tex]
1. Reflect over the y-axis:
The reflection over the y-axis changes the sign of the input variable [tex]\(x\)[/tex]. Therefore, the function transforms into:
[tex]\[ g(x) = (-x)^5 \][/tex]
2. Vertically compress by [tex]\(\frac{1}{3}\)[/tex]:
A vertical compression by a factor of [tex]\(\frac{1}{3}\)[/tex] scales the function value by [tex]\(\frac{1}{3}\)[/tex]. Thus, the function becomes:
[tex]\[ h(x) = \frac{1}{3} \cdot (-x)^5 \][/tex]
3. Shift left by 1 unit:
Shifting a function to the left by 1 unit means replacing [tex]\(x\)[/tex] with [tex]\(x + 1\)[/tex]. Applying this to the function, we get:
[tex]\[ j(x) = \frac{1}{3} \cdot (-(x + 1))^5 \][/tex]
Simplifying the expression, we have:
[tex]\[ j(x) = \frac{1}{3} \cdot (-x - 1)^5 \][/tex]
After applying all these transformations, the resultant function is:
[tex]\[ f(x) = \frac{1}{3}(-x-1)^5 \][/tex]
Therefore, the correct answer is:
C. [tex]\( f(x) = \frac{1}{3}(-x-1)^5 \)[/tex]
Thanks for using our service. We aim to provide the most accurate answers for all your queries. Visit us again for more insights. Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. Get the answers you need at Westonci.ca. Stay informed with our latest expert advice.