Welcome to Westonci.ca, the ultimate question and answer platform. Get expert answers to your questions quickly and accurately. Ask your questions and receive detailed answers from professionals with extensive experience in various fields. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts.
Sagot :
To determine the resulting function after applying the given sequence of transformations to [tex]\( f(x) = x^5 \)[/tex], follow these steps:
1. Reflect over the y-axis:
The reflection over the y-axis changes the sign of the input variable [tex]\(x\)[/tex]. Therefore, the function transforms into:
[tex]\[ g(x) = (-x)^5 \][/tex]
2. Vertically compress by [tex]\(\frac{1}{3}\)[/tex]:
A vertical compression by a factor of [tex]\(\frac{1}{3}\)[/tex] scales the function value by [tex]\(\frac{1}{3}\)[/tex]. Thus, the function becomes:
[tex]\[ h(x) = \frac{1}{3} \cdot (-x)^5 \][/tex]
3. Shift left by 1 unit:
Shifting a function to the left by 1 unit means replacing [tex]\(x\)[/tex] with [tex]\(x + 1\)[/tex]. Applying this to the function, we get:
[tex]\[ j(x) = \frac{1}{3} \cdot (-(x + 1))^5 \][/tex]
Simplifying the expression, we have:
[tex]\[ j(x) = \frac{1}{3} \cdot (-x - 1)^5 \][/tex]
After applying all these transformations, the resultant function is:
[tex]\[ f(x) = \frac{1}{3}(-x-1)^5 \][/tex]
Therefore, the correct answer is:
C. [tex]\( f(x) = \frac{1}{3}(-x-1)^5 \)[/tex]
1. Reflect over the y-axis:
The reflection over the y-axis changes the sign of the input variable [tex]\(x\)[/tex]. Therefore, the function transforms into:
[tex]\[ g(x) = (-x)^5 \][/tex]
2. Vertically compress by [tex]\(\frac{1}{3}\)[/tex]:
A vertical compression by a factor of [tex]\(\frac{1}{3}\)[/tex] scales the function value by [tex]\(\frac{1}{3}\)[/tex]. Thus, the function becomes:
[tex]\[ h(x) = \frac{1}{3} \cdot (-x)^5 \][/tex]
3. Shift left by 1 unit:
Shifting a function to the left by 1 unit means replacing [tex]\(x\)[/tex] with [tex]\(x + 1\)[/tex]. Applying this to the function, we get:
[tex]\[ j(x) = \frac{1}{3} \cdot (-(x + 1))^5 \][/tex]
Simplifying the expression, we have:
[tex]\[ j(x) = \frac{1}{3} \cdot (-x - 1)^5 \][/tex]
After applying all these transformations, the resultant function is:
[tex]\[ f(x) = \frac{1}{3}(-x-1)^5 \][/tex]
Therefore, the correct answer is:
C. [tex]\( f(x) = \frac{1}{3}(-x-1)^5 \)[/tex]
Thank you for choosing our service. We're dedicated to providing the best answers for all your questions. Visit us again. We appreciate your time. Please come back anytime for the latest information and answers to your questions. Find reliable answers at Westonci.ca. Visit us again for the latest updates and expert advice.