Discover answers to your questions with Westonci.ca, the leading Q&A platform that connects you with knowledgeable experts. Connect with a community of experts ready to provide precise solutions to your questions quickly and accurately. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals.
Sagot :
To find [tex]\(\frac{dy}{dx}\)[/tex] for the function [tex]\(y = (3x^3 + 2x^2 + 1)(3x^2 + 4)\)[/tex], we will apply the product rule. The product rule states that if you have two functions [tex]\(u(x)\)[/tex] and [tex]\(v(x)\)[/tex], then the derivative of their product is:
[tex]\[ \frac{d}{dx} [u(x) v(x)] = u'(x) v(x) + u(x) v'(x) \][/tex]
Here, let's define:
[tex]\[ u(x) = 3x^3 + 2x^2 + 1 \][/tex]
[tex]\[ v(x) = 3x^2 + 4 \][/tex]
We will first find the derivatives [tex]\(u'(x)\)[/tex] and [tex]\(v'(x)\)[/tex]:
1. Differentiate [tex]\(u(x)\)[/tex]:
[tex]\[ u(x) = 3x^3 + 2x^2 + 1 \][/tex]
[tex]\[ u'(x) = \frac{d}{dx} (3x^3) + \frac{d}{dx} (2x^2) + \frac{d}{dx} (1) \][/tex]
[tex]\[ u'(x) = 9x^2 + 4x + 0 \][/tex]
[tex]\[ u'(x) = 9x^2 + 4x \][/tex]
2. Differentiate [tex]\(v(x)\)[/tex]:
[tex]\[ v(x) = 3x^2 + 4 \][/tex]
[tex]\[ v'(x) = \frac{d}{dx} (3x^2) + \frac{d}{dx} (4) \][/tex]
[tex]\[ v'(x) = 6x + 0 \][/tex]
[tex]\[ v'(x) = 6x \][/tex]
Now we can apply the product rule:
[tex]\[ \frac{dy}{dx} = u'(x) v(x) + u(x) v'(x) \][/tex]
Substitute [tex]\(u(x)\)[/tex], [tex]\(u'(x)\)[/tex], [tex]\(v(x)\)[/tex], and [tex]\(v'(x)\)[/tex]:
[tex]\[ \frac{dy}{dx} = (9x^2 + 4x)(3x^2 + 4) + (3x^3 + 2x^2 + 1)(6x) \][/tex]
Simplify each term separately:
1. First term:
[tex]\[ (9x^2 + 4x)(3x^2 + 4) \][/tex]
[tex]\[ = 9x^2(3x^2) + 9x^2(4) + 4x(3x^2) + 4x(4) \][/tex]
[tex]\[ = 27x^4 + 36x^2 + 12x^3 + 16x \][/tex]
[tex]\[ = 27x^4 + 12x^3 + 36x^2 + 16x \][/tex]
2. Second term:
[tex]\[ (3x^3 + 2x^2 + 1)(6x) \][/tex]
[tex]\[ = (3x^3)(6x) + (2x^2)(6x) + (1)(6x) \][/tex]
[tex]\[ = 18x^4 + 12x^3 + 6x \][/tex]
Now, combine the two terms:
[tex]\[ \frac{dy}{dx} = (27x^4 + 12x^3 + 36x^2 + 16x) + (18x^4 + 12x^3 + 6x) \][/tex]
[tex]\[ = 27x^4 + 18x^4 + 12x^3 + 12x^3 + 36x^2 + 16x + 6x \][/tex]
[tex]\[ = 45x^4 + 24x^3 + 36x^2 + 22x \][/tex]
Thus, the derivative [tex]\(\frac{dy}{dx}\)[/tex] is:
[tex]\[ \frac{dy}{dx} = 6x(3x^3 + 2x^2 + 1) + (3x^2 + 4)(9x^2 + 4x) \][/tex]
[tex]\[ \frac{d}{dx} [u(x) v(x)] = u'(x) v(x) + u(x) v'(x) \][/tex]
Here, let's define:
[tex]\[ u(x) = 3x^3 + 2x^2 + 1 \][/tex]
[tex]\[ v(x) = 3x^2 + 4 \][/tex]
We will first find the derivatives [tex]\(u'(x)\)[/tex] and [tex]\(v'(x)\)[/tex]:
1. Differentiate [tex]\(u(x)\)[/tex]:
[tex]\[ u(x) = 3x^3 + 2x^2 + 1 \][/tex]
[tex]\[ u'(x) = \frac{d}{dx} (3x^3) + \frac{d}{dx} (2x^2) + \frac{d}{dx} (1) \][/tex]
[tex]\[ u'(x) = 9x^2 + 4x + 0 \][/tex]
[tex]\[ u'(x) = 9x^2 + 4x \][/tex]
2. Differentiate [tex]\(v(x)\)[/tex]:
[tex]\[ v(x) = 3x^2 + 4 \][/tex]
[tex]\[ v'(x) = \frac{d}{dx} (3x^2) + \frac{d}{dx} (4) \][/tex]
[tex]\[ v'(x) = 6x + 0 \][/tex]
[tex]\[ v'(x) = 6x \][/tex]
Now we can apply the product rule:
[tex]\[ \frac{dy}{dx} = u'(x) v(x) + u(x) v'(x) \][/tex]
Substitute [tex]\(u(x)\)[/tex], [tex]\(u'(x)\)[/tex], [tex]\(v(x)\)[/tex], and [tex]\(v'(x)\)[/tex]:
[tex]\[ \frac{dy}{dx} = (9x^2 + 4x)(3x^2 + 4) + (3x^3 + 2x^2 + 1)(6x) \][/tex]
Simplify each term separately:
1. First term:
[tex]\[ (9x^2 + 4x)(3x^2 + 4) \][/tex]
[tex]\[ = 9x^2(3x^2) + 9x^2(4) + 4x(3x^2) + 4x(4) \][/tex]
[tex]\[ = 27x^4 + 36x^2 + 12x^3 + 16x \][/tex]
[tex]\[ = 27x^4 + 12x^3 + 36x^2 + 16x \][/tex]
2. Second term:
[tex]\[ (3x^3 + 2x^2 + 1)(6x) \][/tex]
[tex]\[ = (3x^3)(6x) + (2x^2)(6x) + (1)(6x) \][/tex]
[tex]\[ = 18x^4 + 12x^3 + 6x \][/tex]
Now, combine the two terms:
[tex]\[ \frac{dy}{dx} = (27x^4 + 12x^3 + 36x^2 + 16x) + (18x^4 + 12x^3 + 6x) \][/tex]
[tex]\[ = 27x^4 + 18x^4 + 12x^3 + 12x^3 + 36x^2 + 16x + 6x \][/tex]
[tex]\[ = 45x^4 + 24x^3 + 36x^2 + 22x \][/tex]
Thus, the derivative [tex]\(\frac{dy}{dx}\)[/tex] is:
[tex]\[ \frac{dy}{dx} = 6x(3x^3 + 2x^2 + 1) + (3x^2 + 4)(9x^2 + 4x) \][/tex]
We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. Get the answers you need at Westonci.ca. Stay informed by returning for our latest expert advice.