Discover answers to your questions with Westonci.ca, the leading Q&A platform that connects you with knowledgeable experts. Get quick and reliable solutions to your questions from a community of experienced experts on our platform. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform.
Sagot :
To determine whether the quadratic function [tex]\( f(x) = 3x^2 - 24x - 5 \)[/tex] has a maximum or minimum value, we can analyze the properties of the quadratic function.
1. We observe that the coefficient of [tex]\( x^2 \)[/tex] in the quadratic function is positive ([tex]\( 3 > 0 \)[/tex]). For quadratic functions of the form [tex]\( ax^2 + bx + c \)[/tex], if [tex]\( a > 0 \)[/tex], the parabola opens upwards, indicating that the function has a minimum value (since the vertex of the parabola represents the lowest point).
2. Next, we find the coordinates of the vertex of the parabola. The x-coordinate of the vertex of a quadratic function [tex]\( ax^2 + bx + c \)[/tex] can be found using the formula:
[tex]\[ x = -\frac{b}{2a} \][/tex]
Here, [tex]\( a = 3 \)[/tex] and [tex]\( b = -24 \)[/tex]. Substituting these values into the formula gives:
[tex]\[ x = -\frac{-24}{2 \cdot 3} = \frac{24}{6} = 4 \][/tex]
3. To find the y-coordinate of the vertex, we substitute [tex]\( x = 4 \)[/tex] back into the original function [tex]\( f(x) \)[/tex]:
[tex]\[ f(4) = 3(4)^2 - 24(4) - 5 \][/tex]
Calculating further:
[tex]\[ f(4) = 3 \cdot 16 - 24 \cdot 4 - 5 = 48 - 96 - 5 = -53 \][/tex]
Hence, the vertex of the quadratic function [tex]\( f(x) = 3x^2 - 24x - 5 \)[/tex] is at [tex]\( (4, -53) \)[/tex]. Since the parabola opens upwards, this vertex represents the minimum value of the function.
Thus, the function [tex]\( f(x) \)[/tex] has a minimum value of [tex]\(-53\)[/tex].
The function has a [tex]\(\text{minimum}\)[/tex] value of [tex]\(\text{-53}\)[/tex].
1. We observe that the coefficient of [tex]\( x^2 \)[/tex] in the quadratic function is positive ([tex]\( 3 > 0 \)[/tex]). For quadratic functions of the form [tex]\( ax^2 + bx + c \)[/tex], if [tex]\( a > 0 \)[/tex], the parabola opens upwards, indicating that the function has a minimum value (since the vertex of the parabola represents the lowest point).
2. Next, we find the coordinates of the vertex of the parabola. The x-coordinate of the vertex of a quadratic function [tex]\( ax^2 + bx + c \)[/tex] can be found using the formula:
[tex]\[ x = -\frac{b}{2a} \][/tex]
Here, [tex]\( a = 3 \)[/tex] and [tex]\( b = -24 \)[/tex]. Substituting these values into the formula gives:
[tex]\[ x = -\frac{-24}{2 \cdot 3} = \frac{24}{6} = 4 \][/tex]
3. To find the y-coordinate of the vertex, we substitute [tex]\( x = 4 \)[/tex] back into the original function [tex]\( f(x) \)[/tex]:
[tex]\[ f(4) = 3(4)^2 - 24(4) - 5 \][/tex]
Calculating further:
[tex]\[ f(4) = 3 \cdot 16 - 24 \cdot 4 - 5 = 48 - 96 - 5 = -53 \][/tex]
Hence, the vertex of the quadratic function [tex]\( f(x) = 3x^2 - 24x - 5 \)[/tex] is at [tex]\( (4, -53) \)[/tex]. Since the parabola opens upwards, this vertex represents the minimum value of the function.
Thus, the function [tex]\( f(x) \)[/tex] has a minimum value of [tex]\(-53\)[/tex].
The function has a [tex]\(\text{minimum}\)[/tex] value of [tex]\(\text{-53}\)[/tex].
We hope this was helpful. Please come back whenever you need more information or answers to your queries. We hope this was helpful. Please come back whenever you need more information or answers to your queries. Westonci.ca is here to provide the answers you seek. Return often for more expert solutions.