Welcome to Westonci.ca, your go-to destination for finding answers to all your questions. Join our expert community today! Get detailed and accurate answers to your questions from a community of experts on our comprehensive Q&A platform. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals.
Sagot :
To determine whether the quadratic function [tex]\( f(x) = 3x^2 - 24x - 5 \)[/tex] has a maximum or minimum value, we can analyze the properties of the quadratic function.
1. We observe that the coefficient of [tex]\( x^2 \)[/tex] in the quadratic function is positive ([tex]\( 3 > 0 \)[/tex]). For quadratic functions of the form [tex]\( ax^2 + bx + c \)[/tex], if [tex]\( a > 0 \)[/tex], the parabola opens upwards, indicating that the function has a minimum value (since the vertex of the parabola represents the lowest point).
2. Next, we find the coordinates of the vertex of the parabola. The x-coordinate of the vertex of a quadratic function [tex]\( ax^2 + bx + c \)[/tex] can be found using the formula:
[tex]\[ x = -\frac{b}{2a} \][/tex]
Here, [tex]\( a = 3 \)[/tex] and [tex]\( b = -24 \)[/tex]. Substituting these values into the formula gives:
[tex]\[ x = -\frac{-24}{2 \cdot 3} = \frac{24}{6} = 4 \][/tex]
3. To find the y-coordinate of the vertex, we substitute [tex]\( x = 4 \)[/tex] back into the original function [tex]\( f(x) \)[/tex]:
[tex]\[ f(4) = 3(4)^2 - 24(4) - 5 \][/tex]
Calculating further:
[tex]\[ f(4) = 3 \cdot 16 - 24 \cdot 4 - 5 = 48 - 96 - 5 = -53 \][/tex]
Hence, the vertex of the quadratic function [tex]\( f(x) = 3x^2 - 24x - 5 \)[/tex] is at [tex]\( (4, -53) \)[/tex]. Since the parabola opens upwards, this vertex represents the minimum value of the function.
Thus, the function [tex]\( f(x) \)[/tex] has a minimum value of [tex]\(-53\)[/tex].
The function has a [tex]\(\text{minimum}\)[/tex] value of [tex]\(\text{-53}\)[/tex].
1. We observe that the coefficient of [tex]\( x^2 \)[/tex] in the quadratic function is positive ([tex]\( 3 > 0 \)[/tex]). For quadratic functions of the form [tex]\( ax^2 + bx + c \)[/tex], if [tex]\( a > 0 \)[/tex], the parabola opens upwards, indicating that the function has a minimum value (since the vertex of the parabola represents the lowest point).
2. Next, we find the coordinates of the vertex of the parabola. The x-coordinate of the vertex of a quadratic function [tex]\( ax^2 + bx + c \)[/tex] can be found using the formula:
[tex]\[ x = -\frac{b}{2a} \][/tex]
Here, [tex]\( a = 3 \)[/tex] and [tex]\( b = -24 \)[/tex]. Substituting these values into the formula gives:
[tex]\[ x = -\frac{-24}{2 \cdot 3} = \frac{24}{6} = 4 \][/tex]
3. To find the y-coordinate of the vertex, we substitute [tex]\( x = 4 \)[/tex] back into the original function [tex]\( f(x) \)[/tex]:
[tex]\[ f(4) = 3(4)^2 - 24(4) - 5 \][/tex]
Calculating further:
[tex]\[ f(4) = 3 \cdot 16 - 24 \cdot 4 - 5 = 48 - 96 - 5 = -53 \][/tex]
Hence, the vertex of the quadratic function [tex]\( f(x) = 3x^2 - 24x - 5 \)[/tex] is at [tex]\( (4, -53) \)[/tex]. Since the parabola opens upwards, this vertex represents the minimum value of the function.
Thus, the function [tex]\( f(x) \)[/tex] has a minimum value of [tex]\(-53\)[/tex].
The function has a [tex]\(\text{minimum}\)[/tex] value of [tex]\(\text{-53}\)[/tex].
We appreciate your time. Please revisit us for more reliable answers to any questions you may have. We appreciate your time. Please come back anytime for the latest information and answers to your questions. Get the answers you need at Westonci.ca. Stay informed by returning for our latest expert advice.