Get the answers you need at Westonci.ca, where our expert community is always ready to help with accurate information. Get immediate and reliable answers to your questions from a community of experienced experts on our platform. Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform.
Sagot :
To find the volume of the new solution when the concentration is changed, we need to follow these steps:
1. Determine the number of moles of solute present in the initial solution:
- The concentration (C) of the initial solution is 1.75 M (moles per liter).
- The volume (V) of the initial solution is 84.0 milliliters (which is 0.084 liters as 1 liter = 1000 milliliters).
The formula to calculate moles (n) is:
[tex]\[ n = C \times V \][/tex]
Plugging in the initial values:
[tex]\[ n = 1.75 \, \text{M} \times 0.084 \, \text{L} = 0.147 \, \text{moles} \][/tex]
So, the initial solution contains 0.147 moles of sodium bromide (NaBr).
2. Calculate the new volume of the solution which has the same moles but a different concentration:
- The final concentration (C') is 1.00 M.
- The number of moles of solute remains the same at 0.147 moles.
The formula to find the volume of a solution given its concentration and the number of moles is:
[tex]\[ V' = \frac{n}{C'} \][/tex]
Plugging in the values:
[tex]\[ V' = \frac{0.147 \, \text{moles}}{1.00 \, \text{M}} = 0.147 \, \text{L} \][/tex]
Converting this volume back to milliliters:
[tex]\[ 0.147 \, \text{L} \times 1000 \, \text{mL/L} = 147.0 \, \text{mL} \][/tex]
Thus, the volume of the new solution is 147.0 milliliters.
1. Determine the number of moles of solute present in the initial solution:
- The concentration (C) of the initial solution is 1.75 M (moles per liter).
- The volume (V) of the initial solution is 84.0 milliliters (which is 0.084 liters as 1 liter = 1000 milliliters).
The formula to calculate moles (n) is:
[tex]\[ n = C \times V \][/tex]
Plugging in the initial values:
[tex]\[ n = 1.75 \, \text{M} \times 0.084 \, \text{L} = 0.147 \, \text{moles} \][/tex]
So, the initial solution contains 0.147 moles of sodium bromide (NaBr).
2. Calculate the new volume of the solution which has the same moles but a different concentration:
- The final concentration (C') is 1.00 M.
- The number of moles of solute remains the same at 0.147 moles.
The formula to find the volume of a solution given its concentration and the number of moles is:
[tex]\[ V' = \frac{n}{C'} \][/tex]
Plugging in the values:
[tex]\[ V' = \frac{0.147 \, \text{moles}}{1.00 \, \text{M}} = 0.147 \, \text{L} \][/tex]
Converting this volume back to milliliters:
[tex]\[ 0.147 \, \text{L} \times 1000 \, \text{mL/L} = 147.0 \, \text{mL} \][/tex]
Thus, the volume of the new solution is 147.0 milliliters.
Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. We hope this was helpful. Please come back whenever you need more information or answers to your queries. Your questions are important to us at Westonci.ca. Visit again for expert answers and reliable information.