At Westonci.ca, we make it easy for you to get the answers you need from a community of knowledgeable individuals. Explore a wealth of knowledge from professionals across various disciplines on our comprehensive Q&A platform. Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals.
Sagot :
To solve the given linear programming problem (LPP) using the Simplex Method, we need to transform it into a form suitable for applying the simplex algorithm. Here are the steps for solving this LPP:
### 1. Formulate the Problem
First, let's state the given problem in standard form:
Objective: Maximize [tex]\( Z = 5x_1 + 3x_2 \)[/tex]
Subject to the constraints:
[tex]\[ x_1 + x_2 \leq 10 \][/tex]
[tex]\[ 3x_1 + 2x_2 \leq 12 \][/tex]
[tex]\[ x_1 \geq 0 \][/tex]
[tex]\[ x_2 \geq 0 \][/tex]
### 2. Convert Inequalities to Equations
We introduce slack variables [tex]\( S_1 \)[/tex] and [tex]\( S_2 \)[/tex] to convert the inequalities into equalities:
[tex]\[ x_1 + x_2 + S_1 = 10 \][/tex]
[tex]\[ 3x_1 + 2x_2 + S_2 = 12 \][/tex]
So, the problem in terms of [tex]\( x_1 \)[/tex], [tex]\( x_2 \)[/tex], and slack variables [tex]\( S_1 \)[/tex] and [tex]\( S_2 \)[/tex] is:
Objective: Maximize [tex]\( Z = 5x_1 + 3x_2 \)[/tex]
Subject to:
[tex]\[ x_1 + x_2 + S_1 = 10 \][/tex]
[tex]\[ 3x_1 + 2x_2 + S_2 = 12 \][/tex]
[tex]\[ x_1, x_2, S_1, S_2 \geq 0 \][/tex]
### 3. Form the Initial Simplex Tableau
We create an initial simplex tableau for the system:
[tex]\[ \begin{array}{|c|c|c|c|c|c|c|} \hline \text{Basis} & x_1 & x_2 & S_1 & S_2 & \text{RHS} \\ \hline S_1 & 1 & 1 & 1 & 0 & 10 \\ S_2 & 3 & 2 & 0 & 1 & 12 \\ \hline Z & -5 & -3 & 0 & 0 & 0 \\ \hline \end{array} \][/tex]
### 4. Perform the Simplex Algorithm
Iteration 1:
1. Identify the entering variable (most negative in the bottom row): [tex]\( x_1 \)[/tex] (with a coefficient of -5).
2. Identify the leaving variable using the minimum ratio test:
[tex]\[ \frac{10}{1} = 10 \quad \text{(for row 1)} \][/tex]
[tex]\[ \frac{12}{3} = 4 \quad \text{(for row 2)} \][/tex]
[tex]\( S_2 \)[/tex] will leave the basis since it has the smallest ratio.
3. Pivot around [tex]\( x_1 \)[/tex] in row 2:
- Divide row 2 by the pivot element (3) to make the pivot element 1.
- Adjust other rows ensuring the pivot column becomes [tex]\( (0,1) \)[/tex].
New tableau:
[tex]\[ \begin{array}{|c|c|c|c|c|c|c|} \hline \text{Basis} & x_1 & x_2 & S_1 & S_2 & \text{RHS} \\ \hline S_1 & 0 & \frac{1}{3} & 1 & -\frac{1}{3} & 6 \\ x_1 & 1 & \frac{2}{3} & 0 & \frac{1}{3} & 4 \\ \hline Z & 0 & \frac{1}{3} & 0 & \frac{5}{3} & 20 \\ \hline \end{array} \][/tex]
Iteration 2:
1. Identify the entering variable: [tex]\( x_2 \)[/tex] (with a coefficient of [tex]\(\frac{1}{3}\)[/tex]).
2. Identify the leaving variable using the minimum ratio test:
[tex]\[ \frac{6}{\frac{1}{3}} = 18 \quad \text{(for row 1)} \][/tex]
[tex]\[ \frac{4}{\frac{2}{3}} \approx 6 \quad \text{(for row 2)} \][/tex]
[tex]\( S_1 \)[/tex] will leave the basis.
3. Pivot around [tex]\( x_2 \)[/tex] in row 1:
- Divide row 1 by the pivot element ([tex]\(\frac{1}{3}\)[/tex]) to make the pivot element 1.
- Adjust other rows ensuring the pivot column becomes [tex]\( (0,1) \)[/tex].
New tableau:
[tex]\[ \begin{array}{|c|c|c|c|c|c|c|} \hline \text{Basis} & x_1 & x_2 & S_1 & S_2 & \text{RHS} \\ \hline x_2 & 0 & 1 & 3 & -1 & 18 \\ x_1 & 1 & 0 & -2 & 1 & 2 \\ \hline Z & 0 & 0 & -1 & 1 & 20 \\ \hline \end{array} \][/tex]
Since there are no more negative coefficients in the bottom row of the tableau, the simplex algorithm has found the optimal solution.
### 5. Interpret the Solution
From the final simplex tableau, the values of the variables are:
[tex]\[ x_1 = 4 \][/tex]
[tex]\[ x_2 = 0 \][/tex]
Objective Value:
[tex]\[ Z = 5x_1 + 3x_2 = 5(4) + 3(0) = 20 \][/tex]
So, the optimal value of the objective function [tex]\( Z \)[/tex] is 20, attained at [tex]\( x_1 = 4 \)[/tex] and [tex]\( x_2 = 0 \)[/tex].
### 1. Formulate the Problem
First, let's state the given problem in standard form:
Objective: Maximize [tex]\( Z = 5x_1 + 3x_2 \)[/tex]
Subject to the constraints:
[tex]\[ x_1 + x_2 \leq 10 \][/tex]
[tex]\[ 3x_1 + 2x_2 \leq 12 \][/tex]
[tex]\[ x_1 \geq 0 \][/tex]
[tex]\[ x_2 \geq 0 \][/tex]
### 2. Convert Inequalities to Equations
We introduce slack variables [tex]\( S_1 \)[/tex] and [tex]\( S_2 \)[/tex] to convert the inequalities into equalities:
[tex]\[ x_1 + x_2 + S_1 = 10 \][/tex]
[tex]\[ 3x_1 + 2x_2 + S_2 = 12 \][/tex]
So, the problem in terms of [tex]\( x_1 \)[/tex], [tex]\( x_2 \)[/tex], and slack variables [tex]\( S_1 \)[/tex] and [tex]\( S_2 \)[/tex] is:
Objective: Maximize [tex]\( Z = 5x_1 + 3x_2 \)[/tex]
Subject to:
[tex]\[ x_1 + x_2 + S_1 = 10 \][/tex]
[tex]\[ 3x_1 + 2x_2 + S_2 = 12 \][/tex]
[tex]\[ x_1, x_2, S_1, S_2 \geq 0 \][/tex]
### 3. Form the Initial Simplex Tableau
We create an initial simplex tableau for the system:
[tex]\[ \begin{array}{|c|c|c|c|c|c|c|} \hline \text{Basis} & x_1 & x_2 & S_1 & S_2 & \text{RHS} \\ \hline S_1 & 1 & 1 & 1 & 0 & 10 \\ S_2 & 3 & 2 & 0 & 1 & 12 \\ \hline Z & -5 & -3 & 0 & 0 & 0 \\ \hline \end{array} \][/tex]
### 4. Perform the Simplex Algorithm
Iteration 1:
1. Identify the entering variable (most negative in the bottom row): [tex]\( x_1 \)[/tex] (with a coefficient of -5).
2. Identify the leaving variable using the minimum ratio test:
[tex]\[ \frac{10}{1} = 10 \quad \text{(for row 1)} \][/tex]
[tex]\[ \frac{12}{3} = 4 \quad \text{(for row 2)} \][/tex]
[tex]\( S_2 \)[/tex] will leave the basis since it has the smallest ratio.
3. Pivot around [tex]\( x_1 \)[/tex] in row 2:
- Divide row 2 by the pivot element (3) to make the pivot element 1.
- Adjust other rows ensuring the pivot column becomes [tex]\( (0,1) \)[/tex].
New tableau:
[tex]\[ \begin{array}{|c|c|c|c|c|c|c|} \hline \text{Basis} & x_1 & x_2 & S_1 & S_2 & \text{RHS} \\ \hline S_1 & 0 & \frac{1}{3} & 1 & -\frac{1}{3} & 6 \\ x_1 & 1 & \frac{2}{3} & 0 & \frac{1}{3} & 4 \\ \hline Z & 0 & \frac{1}{3} & 0 & \frac{5}{3} & 20 \\ \hline \end{array} \][/tex]
Iteration 2:
1. Identify the entering variable: [tex]\( x_2 \)[/tex] (with a coefficient of [tex]\(\frac{1}{3}\)[/tex]).
2. Identify the leaving variable using the minimum ratio test:
[tex]\[ \frac{6}{\frac{1}{3}} = 18 \quad \text{(for row 1)} \][/tex]
[tex]\[ \frac{4}{\frac{2}{3}} \approx 6 \quad \text{(for row 2)} \][/tex]
[tex]\( S_1 \)[/tex] will leave the basis.
3. Pivot around [tex]\( x_2 \)[/tex] in row 1:
- Divide row 1 by the pivot element ([tex]\(\frac{1}{3}\)[/tex]) to make the pivot element 1.
- Adjust other rows ensuring the pivot column becomes [tex]\( (0,1) \)[/tex].
New tableau:
[tex]\[ \begin{array}{|c|c|c|c|c|c|c|} \hline \text{Basis} & x_1 & x_2 & S_1 & S_2 & \text{RHS} \\ \hline x_2 & 0 & 1 & 3 & -1 & 18 \\ x_1 & 1 & 0 & -2 & 1 & 2 \\ \hline Z & 0 & 0 & -1 & 1 & 20 \\ \hline \end{array} \][/tex]
Since there are no more negative coefficients in the bottom row of the tableau, the simplex algorithm has found the optimal solution.
### 5. Interpret the Solution
From the final simplex tableau, the values of the variables are:
[tex]\[ x_1 = 4 \][/tex]
[tex]\[ x_2 = 0 \][/tex]
Objective Value:
[tex]\[ Z = 5x_1 + 3x_2 = 5(4) + 3(0) = 20 \][/tex]
So, the optimal value of the objective function [tex]\( Z \)[/tex] is 20, attained at [tex]\( x_1 = 4 \)[/tex] and [tex]\( x_2 = 0 \)[/tex].
Thanks for using our platform. We're always here to provide accurate and up-to-date answers to all your queries. Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. We're dedicated to helping you find the answers you need at Westonci.ca. Don't hesitate to return for more.