Welcome to Westonci.ca, your go-to destination for finding answers to all your questions. Join our expert community today! Explore our Q&A platform to find in-depth answers from a wide range of experts in different fields. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform.
Sagot :
To solve the given linear programming problem (LPP) using the Simplex Method, we need to transform it into a form suitable for applying the simplex algorithm. Here are the steps for solving this LPP:
### 1. Formulate the Problem
First, let's state the given problem in standard form:
Objective: Maximize [tex]\( Z = 5x_1 + 3x_2 \)[/tex]
Subject to the constraints:
[tex]\[ x_1 + x_2 \leq 10 \][/tex]
[tex]\[ 3x_1 + 2x_2 \leq 12 \][/tex]
[tex]\[ x_1 \geq 0 \][/tex]
[tex]\[ x_2 \geq 0 \][/tex]
### 2. Convert Inequalities to Equations
We introduce slack variables [tex]\( S_1 \)[/tex] and [tex]\( S_2 \)[/tex] to convert the inequalities into equalities:
[tex]\[ x_1 + x_2 + S_1 = 10 \][/tex]
[tex]\[ 3x_1 + 2x_2 + S_2 = 12 \][/tex]
So, the problem in terms of [tex]\( x_1 \)[/tex], [tex]\( x_2 \)[/tex], and slack variables [tex]\( S_1 \)[/tex] and [tex]\( S_2 \)[/tex] is:
Objective: Maximize [tex]\( Z = 5x_1 + 3x_2 \)[/tex]
Subject to:
[tex]\[ x_1 + x_2 + S_1 = 10 \][/tex]
[tex]\[ 3x_1 + 2x_2 + S_2 = 12 \][/tex]
[tex]\[ x_1, x_2, S_1, S_2 \geq 0 \][/tex]
### 3. Form the Initial Simplex Tableau
We create an initial simplex tableau for the system:
[tex]\[ \begin{array}{|c|c|c|c|c|c|c|} \hline \text{Basis} & x_1 & x_2 & S_1 & S_2 & \text{RHS} \\ \hline S_1 & 1 & 1 & 1 & 0 & 10 \\ S_2 & 3 & 2 & 0 & 1 & 12 \\ \hline Z & -5 & -3 & 0 & 0 & 0 \\ \hline \end{array} \][/tex]
### 4. Perform the Simplex Algorithm
Iteration 1:
1. Identify the entering variable (most negative in the bottom row): [tex]\( x_1 \)[/tex] (with a coefficient of -5).
2. Identify the leaving variable using the minimum ratio test:
[tex]\[ \frac{10}{1} = 10 \quad \text{(for row 1)} \][/tex]
[tex]\[ \frac{12}{3} = 4 \quad \text{(for row 2)} \][/tex]
[tex]\( S_2 \)[/tex] will leave the basis since it has the smallest ratio.
3. Pivot around [tex]\( x_1 \)[/tex] in row 2:
- Divide row 2 by the pivot element (3) to make the pivot element 1.
- Adjust other rows ensuring the pivot column becomes [tex]\( (0,1) \)[/tex].
New tableau:
[tex]\[ \begin{array}{|c|c|c|c|c|c|c|} \hline \text{Basis} & x_1 & x_2 & S_1 & S_2 & \text{RHS} \\ \hline S_1 & 0 & \frac{1}{3} & 1 & -\frac{1}{3} & 6 \\ x_1 & 1 & \frac{2}{3} & 0 & \frac{1}{3} & 4 \\ \hline Z & 0 & \frac{1}{3} & 0 & \frac{5}{3} & 20 \\ \hline \end{array} \][/tex]
Iteration 2:
1. Identify the entering variable: [tex]\( x_2 \)[/tex] (with a coefficient of [tex]\(\frac{1}{3}\)[/tex]).
2. Identify the leaving variable using the minimum ratio test:
[tex]\[ \frac{6}{\frac{1}{3}} = 18 \quad \text{(for row 1)} \][/tex]
[tex]\[ \frac{4}{\frac{2}{3}} \approx 6 \quad \text{(for row 2)} \][/tex]
[tex]\( S_1 \)[/tex] will leave the basis.
3. Pivot around [tex]\( x_2 \)[/tex] in row 1:
- Divide row 1 by the pivot element ([tex]\(\frac{1}{3}\)[/tex]) to make the pivot element 1.
- Adjust other rows ensuring the pivot column becomes [tex]\( (0,1) \)[/tex].
New tableau:
[tex]\[ \begin{array}{|c|c|c|c|c|c|c|} \hline \text{Basis} & x_1 & x_2 & S_1 & S_2 & \text{RHS} \\ \hline x_2 & 0 & 1 & 3 & -1 & 18 \\ x_1 & 1 & 0 & -2 & 1 & 2 \\ \hline Z & 0 & 0 & -1 & 1 & 20 \\ \hline \end{array} \][/tex]
Since there are no more negative coefficients in the bottom row of the tableau, the simplex algorithm has found the optimal solution.
### 5. Interpret the Solution
From the final simplex tableau, the values of the variables are:
[tex]\[ x_1 = 4 \][/tex]
[tex]\[ x_2 = 0 \][/tex]
Objective Value:
[tex]\[ Z = 5x_1 + 3x_2 = 5(4) + 3(0) = 20 \][/tex]
So, the optimal value of the objective function [tex]\( Z \)[/tex] is 20, attained at [tex]\( x_1 = 4 \)[/tex] and [tex]\( x_2 = 0 \)[/tex].
### 1. Formulate the Problem
First, let's state the given problem in standard form:
Objective: Maximize [tex]\( Z = 5x_1 + 3x_2 \)[/tex]
Subject to the constraints:
[tex]\[ x_1 + x_2 \leq 10 \][/tex]
[tex]\[ 3x_1 + 2x_2 \leq 12 \][/tex]
[tex]\[ x_1 \geq 0 \][/tex]
[tex]\[ x_2 \geq 0 \][/tex]
### 2. Convert Inequalities to Equations
We introduce slack variables [tex]\( S_1 \)[/tex] and [tex]\( S_2 \)[/tex] to convert the inequalities into equalities:
[tex]\[ x_1 + x_2 + S_1 = 10 \][/tex]
[tex]\[ 3x_1 + 2x_2 + S_2 = 12 \][/tex]
So, the problem in terms of [tex]\( x_1 \)[/tex], [tex]\( x_2 \)[/tex], and slack variables [tex]\( S_1 \)[/tex] and [tex]\( S_2 \)[/tex] is:
Objective: Maximize [tex]\( Z = 5x_1 + 3x_2 \)[/tex]
Subject to:
[tex]\[ x_1 + x_2 + S_1 = 10 \][/tex]
[tex]\[ 3x_1 + 2x_2 + S_2 = 12 \][/tex]
[tex]\[ x_1, x_2, S_1, S_2 \geq 0 \][/tex]
### 3. Form the Initial Simplex Tableau
We create an initial simplex tableau for the system:
[tex]\[ \begin{array}{|c|c|c|c|c|c|c|} \hline \text{Basis} & x_1 & x_2 & S_1 & S_2 & \text{RHS} \\ \hline S_1 & 1 & 1 & 1 & 0 & 10 \\ S_2 & 3 & 2 & 0 & 1 & 12 \\ \hline Z & -5 & -3 & 0 & 0 & 0 \\ \hline \end{array} \][/tex]
### 4. Perform the Simplex Algorithm
Iteration 1:
1. Identify the entering variable (most negative in the bottom row): [tex]\( x_1 \)[/tex] (with a coefficient of -5).
2. Identify the leaving variable using the minimum ratio test:
[tex]\[ \frac{10}{1} = 10 \quad \text{(for row 1)} \][/tex]
[tex]\[ \frac{12}{3} = 4 \quad \text{(for row 2)} \][/tex]
[tex]\( S_2 \)[/tex] will leave the basis since it has the smallest ratio.
3. Pivot around [tex]\( x_1 \)[/tex] in row 2:
- Divide row 2 by the pivot element (3) to make the pivot element 1.
- Adjust other rows ensuring the pivot column becomes [tex]\( (0,1) \)[/tex].
New tableau:
[tex]\[ \begin{array}{|c|c|c|c|c|c|c|} \hline \text{Basis} & x_1 & x_2 & S_1 & S_2 & \text{RHS} \\ \hline S_1 & 0 & \frac{1}{3} & 1 & -\frac{1}{3} & 6 \\ x_1 & 1 & \frac{2}{3} & 0 & \frac{1}{3} & 4 \\ \hline Z & 0 & \frac{1}{3} & 0 & \frac{5}{3} & 20 \\ \hline \end{array} \][/tex]
Iteration 2:
1. Identify the entering variable: [tex]\( x_2 \)[/tex] (with a coefficient of [tex]\(\frac{1}{3}\)[/tex]).
2. Identify the leaving variable using the minimum ratio test:
[tex]\[ \frac{6}{\frac{1}{3}} = 18 \quad \text{(for row 1)} \][/tex]
[tex]\[ \frac{4}{\frac{2}{3}} \approx 6 \quad \text{(for row 2)} \][/tex]
[tex]\( S_1 \)[/tex] will leave the basis.
3. Pivot around [tex]\( x_2 \)[/tex] in row 1:
- Divide row 1 by the pivot element ([tex]\(\frac{1}{3}\)[/tex]) to make the pivot element 1.
- Adjust other rows ensuring the pivot column becomes [tex]\( (0,1) \)[/tex].
New tableau:
[tex]\[ \begin{array}{|c|c|c|c|c|c|c|} \hline \text{Basis} & x_1 & x_2 & S_1 & S_2 & \text{RHS} \\ \hline x_2 & 0 & 1 & 3 & -1 & 18 \\ x_1 & 1 & 0 & -2 & 1 & 2 \\ \hline Z & 0 & 0 & -1 & 1 & 20 \\ \hline \end{array} \][/tex]
Since there are no more negative coefficients in the bottom row of the tableau, the simplex algorithm has found the optimal solution.
### 5. Interpret the Solution
From the final simplex tableau, the values of the variables are:
[tex]\[ x_1 = 4 \][/tex]
[tex]\[ x_2 = 0 \][/tex]
Objective Value:
[tex]\[ Z = 5x_1 + 3x_2 = 5(4) + 3(0) = 20 \][/tex]
So, the optimal value of the objective function [tex]\( Z \)[/tex] is 20, attained at [tex]\( x_1 = 4 \)[/tex] and [tex]\( x_2 = 0 \)[/tex].
Thank you for choosing our service. We're dedicated to providing the best answers for all your questions. Visit us again. We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. We're glad you chose Westonci.ca. Revisit us for updated answers from our knowledgeable team.