Westonci.ca is your trusted source for finding answers to a wide range of questions, backed by a knowledgeable community. Explore a wealth of knowledge from professionals across various disciplines on our comprehensive Q&A platform. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform.
Sagot :
To determine the line of reflection that produces [tex]\( Z'(10, 7) \)[/tex] from [tex]\( Z(-10, 7) \)[/tex], we need to understand the properties of reflections in geometry.
A reflection flips a point or figure over a line in such a way that the original point and its image are equidistant from the line of reflection. Here’s the step-by-step process:
1. Identify Coordinates of the Point and its Image:
- Original point [tex]\( Z \)[/tex] has coordinates [tex]\((-10, 7)\)[/tex].
- Reflected image [tex]\( Z' \)[/tex] has coordinates [tex]\( (10, 7) \)[/tex].
2. Determine the Midpoint:
- The line of reflection lies midway between the original point [tex]\( Z \)[/tex] and its reflected image [tex]\( Z' \)[/tex].
- To find the midpoint, we calculate:
[tex]\[ \text{midpoint} = \left( \frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2} \right) \][/tex]
Using the coordinates:
[tex]\[ \text{midpoint} = \left( \frac{-10 + 10}{2}, \frac{7 + 7}{2} \right) = (0, 7) \][/tex]
3. Determine the Line of Reflection:
- The y-coordinates of both points are the same (7), which means the line of reflection is vertical and must pass through the x-coordinate of the midpoint.
- Since the x-coordinate of the midpoint is [tex]\( 0 \)[/tex], the line is:
[tex]\[ x = 0 \][/tex]
In conclusion, the line of reflection that produces [tex]\( Z'(10, 7) \)[/tex] from [tex]\( Z(-10, 7) \)[/tex] is the y-axis. This can be described mathematically as [tex]\( x = 0 \)[/tex].
A reflection flips a point or figure over a line in such a way that the original point and its image are equidistant from the line of reflection. Here’s the step-by-step process:
1. Identify Coordinates of the Point and its Image:
- Original point [tex]\( Z \)[/tex] has coordinates [tex]\((-10, 7)\)[/tex].
- Reflected image [tex]\( Z' \)[/tex] has coordinates [tex]\( (10, 7) \)[/tex].
2. Determine the Midpoint:
- The line of reflection lies midway between the original point [tex]\( Z \)[/tex] and its reflected image [tex]\( Z' \)[/tex].
- To find the midpoint, we calculate:
[tex]\[ \text{midpoint} = \left( \frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2} \right) \][/tex]
Using the coordinates:
[tex]\[ \text{midpoint} = \left( \frac{-10 + 10}{2}, \frac{7 + 7}{2} \right) = (0, 7) \][/tex]
3. Determine the Line of Reflection:
- The y-coordinates of both points are the same (7), which means the line of reflection is vertical and must pass through the x-coordinate of the midpoint.
- Since the x-coordinate of the midpoint is [tex]\( 0 \)[/tex], the line is:
[tex]\[ x = 0 \][/tex]
In conclusion, the line of reflection that produces [tex]\( Z'(10, 7) \)[/tex] from [tex]\( Z(-10, 7) \)[/tex] is the y-axis. This can be described mathematically as [tex]\( x = 0 \)[/tex].
Thank you for choosing our service. We're dedicated to providing the best answers for all your questions. Visit us again. Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. Thank you for visiting Westonci.ca. Stay informed by coming back for more detailed answers.