Answered

Westonci.ca is the Q&A platform that connects you with experts who provide accurate and detailed answers. Connect with professionals on our platform to receive accurate answers to your questions quickly and efficiently. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform.

Complete the square to solve [tex]4x^2 + 24x = 4[/tex].

A. [tex]x = -3 \pm \sqrt{10}[/tex]
B. [tex]x = 3 \pm \sqrt{10}[/tex]
C. [tex]x = 4 \pm \sqrt{40}[/tex]
D. [tex]x = -4 \pm \sqrt{20}[/tex]


Sagot :

Certainly! Let's solve the quadratic equation [tex]\(4x^2 + 24x = 4\)[/tex] by completing the square step by step.

First, let's rewrite the equation in standard quadratic form:
[tex]\[ 4x^2 + 24x - 4 = 0 \][/tex]

Step 1: Divide the entire equation by 4 to simplify it:
[tex]\[ x^2 + 6x - 1 = 0 \][/tex]

Step 2: Move the constant term to the right side:
[tex]\[ x^2 + 6x = 1 \][/tex]

Step 3: To complete the square, we take half of the coefficient of [tex]\(x\)[/tex] (which is 6), square it, and add it to both sides of the equation:
[tex]\[ \left(\frac{6}{2}\right)^2 = 3^2 = 9 \][/tex]
[tex]\[ x^2 + 6x + 9 = 1 + 9 \][/tex]
[tex]\[ (x + 3)^2 = 10 \][/tex]

Step 4: To solve for [tex]\(x\)[/tex], we take the square root of both sides:
[tex]\[ x + 3 = \pm \sqrt{10} \][/tex]

Step 5: Solve for [tex]\(x\)[/tex] by isolating it:
[tex]\[ x = -3 \pm \sqrt{10} \][/tex]

Thus, the solutions to the quadratic equation [tex]\(4x^2 + 24x = 4\)[/tex] are:
[tex]\[ \boxed{-3 \pm \sqrt{10}} \][/tex]

By matching these solutions with the given choices, we identify the correct answer:

[tex]\[ A. x = -3 \pm \sqrt{10} \][/tex]