Looking for reliable answers? Westonci.ca is the ultimate Q&A platform where experts share their knowledge on various topics. Our platform provides a seamless experience for finding reliable answers from a knowledgeable network of professionals. Get quick and reliable solutions to your questions from a community of experienced experts on our platform.
Sagot :
Certainly! Let's solve the quadratic equation [tex]\(4x^2 + 24x = 4\)[/tex] by completing the square step by step.
First, let's rewrite the equation in standard quadratic form:
[tex]\[ 4x^2 + 24x - 4 = 0 \][/tex]
Step 1: Divide the entire equation by 4 to simplify it:
[tex]\[ x^2 + 6x - 1 = 0 \][/tex]
Step 2: Move the constant term to the right side:
[tex]\[ x^2 + 6x = 1 \][/tex]
Step 3: To complete the square, we take half of the coefficient of [tex]\(x\)[/tex] (which is 6), square it, and add it to both sides of the equation:
[tex]\[ \left(\frac{6}{2}\right)^2 = 3^2 = 9 \][/tex]
[tex]\[ x^2 + 6x + 9 = 1 + 9 \][/tex]
[tex]\[ (x + 3)^2 = 10 \][/tex]
Step 4: To solve for [tex]\(x\)[/tex], we take the square root of both sides:
[tex]\[ x + 3 = \pm \sqrt{10} \][/tex]
Step 5: Solve for [tex]\(x\)[/tex] by isolating it:
[tex]\[ x = -3 \pm \sqrt{10} \][/tex]
Thus, the solutions to the quadratic equation [tex]\(4x^2 + 24x = 4\)[/tex] are:
[tex]\[ \boxed{-3 \pm \sqrt{10}} \][/tex]
By matching these solutions with the given choices, we identify the correct answer:
[tex]\[ A. x = -3 \pm \sqrt{10} \][/tex]
First, let's rewrite the equation in standard quadratic form:
[tex]\[ 4x^2 + 24x - 4 = 0 \][/tex]
Step 1: Divide the entire equation by 4 to simplify it:
[tex]\[ x^2 + 6x - 1 = 0 \][/tex]
Step 2: Move the constant term to the right side:
[tex]\[ x^2 + 6x = 1 \][/tex]
Step 3: To complete the square, we take half of the coefficient of [tex]\(x\)[/tex] (which is 6), square it, and add it to both sides of the equation:
[tex]\[ \left(\frac{6}{2}\right)^2 = 3^2 = 9 \][/tex]
[tex]\[ x^2 + 6x + 9 = 1 + 9 \][/tex]
[tex]\[ (x + 3)^2 = 10 \][/tex]
Step 4: To solve for [tex]\(x\)[/tex], we take the square root of both sides:
[tex]\[ x + 3 = \pm \sqrt{10} \][/tex]
Step 5: Solve for [tex]\(x\)[/tex] by isolating it:
[tex]\[ x = -3 \pm \sqrt{10} \][/tex]
Thus, the solutions to the quadratic equation [tex]\(4x^2 + 24x = 4\)[/tex] are:
[tex]\[ \boxed{-3 \pm \sqrt{10}} \][/tex]
By matching these solutions with the given choices, we identify the correct answer:
[tex]\[ A. x = -3 \pm \sqrt{10} \][/tex]
Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. Discover more at Westonci.ca. Return for the latest expert answers and updates on various topics.