Westonci.ca offers fast, accurate answers to your questions. Join our community and get the insights you need now. Connect with a community of experts ready to provide precise solutions to your questions on our user-friendly Q&A platform. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform.
Sagot :
Certainly! Let's solve the quadratic equation [tex]\(4x^2 + 24x = 4\)[/tex] by completing the square step by step.
First, let's rewrite the equation in standard quadratic form:
[tex]\[ 4x^2 + 24x - 4 = 0 \][/tex]
Step 1: Divide the entire equation by 4 to simplify it:
[tex]\[ x^2 + 6x - 1 = 0 \][/tex]
Step 2: Move the constant term to the right side:
[tex]\[ x^2 + 6x = 1 \][/tex]
Step 3: To complete the square, we take half of the coefficient of [tex]\(x\)[/tex] (which is 6), square it, and add it to both sides of the equation:
[tex]\[ \left(\frac{6}{2}\right)^2 = 3^2 = 9 \][/tex]
[tex]\[ x^2 + 6x + 9 = 1 + 9 \][/tex]
[tex]\[ (x + 3)^2 = 10 \][/tex]
Step 4: To solve for [tex]\(x\)[/tex], we take the square root of both sides:
[tex]\[ x + 3 = \pm \sqrt{10} \][/tex]
Step 5: Solve for [tex]\(x\)[/tex] by isolating it:
[tex]\[ x = -3 \pm \sqrt{10} \][/tex]
Thus, the solutions to the quadratic equation [tex]\(4x^2 + 24x = 4\)[/tex] are:
[tex]\[ \boxed{-3 \pm \sqrt{10}} \][/tex]
By matching these solutions with the given choices, we identify the correct answer:
[tex]\[ A. x = -3 \pm \sqrt{10} \][/tex]
First, let's rewrite the equation in standard quadratic form:
[tex]\[ 4x^2 + 24x - 4 = 0 \][/tex]
Step 1: Divide the entire equation by 4 to simplify it:
[tex]\[ x^2 + 6x - 1 = 0 \][/tex]
Step 2: Move the constant term to the right side:
[tex]\[ x^2 + 6x = 1 \][/tex]
Step 3: To complete the square, we take half of the coefficient of [tex]\(x\)[/tex] (which is 6), square it, and add it to both sides of the equation:
[tex]\[ \left(\frac{6}{2}\right)^2 = 3^2 = 9 \][/tex]
[tex]\[ x^2 + 6x + 9 = 1 + 9 \][/tex]
[tex]\[ (x + 3)^2 = 10 \][/tex]
Step 4: To solve for [tex]\(x\)[/tex], we take the square root of both sides:
[tex]\[ x + 3 = \pm \sqrt{10} \][/tex]
Step 5: Solve for [tex]\(x\)[/tex] by isolating it:
[tex]\[ x = -3 \pm \sqrt{10} \][/tex]
Thus, the solutions to the quadratic equation [tex]\(4x^2 + 24x = 4\)[/tex] are:
[tex]\[ \boxed{-3 \pm \sqrt{10}} \][/tex]
By matching these solutions with the given choices, we identify the correct answer:
[tex]\[ A. x = -3 \pm \sqrt{10} \][/tex]
Thanks for using our platform. We're always here to provide accurate and up-to-date answers to all your queries. We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. We're glad you visited Westonci.ca. Return anytime for updated answers from our knowledgeable team.