Looking for trustworthy answers? Westonci.ca is the ultimate Q&A platform where experts share their knowledge on various topics. Explore our Q&A platform to find in-depth answers from a wide range of experts in different fields. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals.
Sagot :
To solve the equation [tex]\((x-4)^2 = 5\)[/tex], let's break it down step-by-step:
1. Understand the Equation: We start with [tex]\((x-4)^2 = 5\)[/tex]. This is a quadratic equation in a form that suggests taking the square root of both sides.
2. Taking Square Roots: Taking the square root of both sides gives us two possible equations because both the positive and negative roots need to be considered:
[tex]\[ \sqrt{(x-4)^2} = \sqrt{5} \][/tex]
which simplifies to:
[tex]\[ |x-4| = \sqrt{5} \][/tex]
3. Splitting into Two Equations: The absolute value equation [tex]\(|x-4| = \sqrt{5}\)[/tex] means:
[tex]\[ x-4 = \sqrt{5} \quad \text{or} \quad x-4 = -\sqrt{5} \][/tex]
4. Solving Each Equation:
- From [tex]\(x-4 = \sqrt{5}\)[/tex]:
[tex]\[ x = 4 + \sqrt{5} \][/tex]
- From [tex]\(x-4 = -\sqrt{5}\)[/tex]:
[tex]\[ x = 4 - \sqrt{5} \][/tex]
5. List the Solutions: The solutions to the equation [tex]\((x-4)^2 = 5\)[/tex] are:
[tex]\[ x = 4 + \sqrt{5} \quad \text{and} \quad x = 4 - \sqrt{5} \][/tex]
6. Matching with Provided Choices: We now match our solutions with the given choices:
- A. [tex]\(x=9\)[/tex] and [tex]\(x=-1\)[/tex] - This does not match.
- B. [tex]\(x=4 \pm \sqrt{5}\)[/tex] - This matches our solutions exactly.
- C. [tex]\(x=-4 \pm \sqrt{5}\)[/tex] - This does not match.
- D. [tex]\(x=5 \pm \sqrt{4}\)[/tex] - This does not match.
Therefore, the correct choice is:
[tex]\[ \boxed{B} \][/tex]
1. Understand the Equation: We start with [tex]\((x-4)^2 = 5\)[/tex]. This is a quadratic equation in a form that suggests taking the square root of both sides.
2. Taking Square Roots: Taking the square root of both sides gives us two possible equations because both the positive and negative roots need to be considered:
[tex]\[ \sqrt{(x-4)^2} = \sqrt{5} \][/tex]
which simplifies to:
[tex]\[ |x-4| = \sqrt{5} \][/tex]
3. Splitting into Two Equations: The absolute value equation [tex]\(|x-4| = \sqrt{5}\)[/tex] means:
[tex]\[ x-4 = \sqrt{5} \quad \text{or} \quad x-4 = -\sqrt{5} \][/tex]
4. Solving Each Equation:
- From [tex]\(x-4 = \sqrt{5}\)[/tex]:
[tex]\[ x = 4 + \sqrt{5} \][/tex]
- From [tex]\(x-4 = -\sqrt{5}\)[/tex]:
[tex]\[ x = 4 - \sqrt{5} \][/tex]
5. List the Solutions: The solutions to the equation [tex]\((x-4)^2 = 5\)[/tex] are:
[tex]\[ x = 4 + \sqrt{5} \quad \text{and} \quad x = 4 - \sqrt{5} \][/tex]
6. Matching with Provided Choices: We now match our solutions with the given choices:
- A. [tex]\(x=9\)[/tex] and [tex]\(x=-1\)[/tex] - This does not match.
- B. [tex]\(x=4 \pm \sqrt{5}\)[/tex] - This matches our solutions exactly.
- C. [tex]\(x=-4 \pm \sqrt{5}\)[/tex] - This does not match.
- D. [tex]\(x=5 \pm \sqrt{4}\)[/tex] - This does not match.
Therefore, the correct choice is:
[tex]\[ \boxed{B} \][/tex]
Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Find reliable answers at Westonci.ca. Visit us again for the latest updates and expert advice.