Welcome to Westonci.ca, the place where your questions are answered by a community of knowledgeable contributors. Our platform connects you with professionals ready to provide precise answers to all your questions in various areas of expertise. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals.
Sagot :
To rewrite the expression [tex]\(x^3 - 64\)[/tex] using the difference of cubes, we need to recognize that 64 can be expressed as a power of 4, specifically [tex]\(4^3\)[/tex]. The difference of cubes formula is:
[tex]\[ a^3 - b^3 = (a - b)(a^2 + ab + b^2) \][/tex]
In the given expression [tex]\(x^3 - 64\)[/tex], we can set [tex]\(a = x\)[/tex] and [tex]\(b = 4\)[/tex] since [tex]\(64 = 4^3\)[/tex].
Substituting [tex]\(a\)[/tex] and [tex]\(b\)[/tex] into the formula, we get:
[tex]\[ x^3 - 64 = x^3 - 4^3 \][/tex]
Now, applying the difference of cubes formula:
[tex]\[ x^3 - 4^3 = (x - 4)(x^2 + 4x + 16) \][/tex]
We need to compare this with the given options to identify the correct factorization:
A. [tex]\((x+4)(x^2 - 4x + 16)\)[/tex]
B. [tex]\((x-4)(x^2 + 4x + 16)\)[/tex]
C. [tex]\((x-4)(x^2 + 16x + 4)\)[/tex]
D. [tex]\((x+4)(x^2 - 4x - 16)\)[/tex]
Looking at the options, the correct factorization matches option B:
[tex]\[ (x-4)(x^2 + 4x + 16) \][/tex]
Therefore, the correct answer is:
B. [tex]\((x-4)(x^2 + 4x + 16)\)[/tex]
[tex]\[ a^3 - b^3 = (a - b)(a^2 + ab + b^2) \][/tex]
In the given expression [tex]\(x^3 - 64\)[/tex], we can set [tex]\(a = x\)[/tex] and [tex]\(b = 4\)[/tex] since [tex]\(64 = 4^3\)[/tex].
Substituting [tex]\(a\)[/tex] and [tex]\(b\)[/tex] into the formula, we get:
[tex]\[ x^3 - 64 = x^3 - 4^3 \][/tex]
Now, applying the difference of cubes formula:
[tex]\[ x^3 - 4^3 = (x - 4)(x^2 + 4x + 16) \][/tex]
We need to compare this with the given options to identify the correct factorization:
A. [tex]\((x+4)(x^2 - 4x + 16)\)[/tex]
B. [tex]\((x-4)(x^2 + 4x + 16)\)[/tex]
C. [tex]\((x-4)(x^2 + 16x + 4)\)[/tex]
D. [tex]\((x+4)(x^2 - 4x - 16)\)[/tex]
Looking at the options, the correct factorization matches option B:
[tex]\[ (x-4)(x^2 + 4x + 16) \][/tex]
Therefore, the correct answer is:
B. [tex]\((x-4)(x^2 + 4x + 16)\)[/tex]
Thank you for visiting our platform. We hope you found the answers you were looking for. Come back anytime you need more information. Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. Thank you for trusting Westonci.ca. Don't forget to revisit us for more accurate and insightful answers.