Find the best answers to your questions at Westonci.ca, where experts and enthusiasts provide accurate, reliable information. Discover comprehensive answers to your questions from knowledgeable professionals on our user-friendly platform. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields.
Sagot :
Let's solve the given problem step by step.
### Problem Setup:
We are given:
- [tex]\(\sin A = x + 2\)[/tex]
- [tex]\(\cos B = 2x - 5\)[/tex]
### Step 1: Understanding the Relationship
In a right triangle, the sum of the angles is [tex]\(90^\circ\)[/tex]. Therefore, if [tex]\(\angle A\)[/tex] and [tex]\(\angle B\)[/tex] are acute angles of a right triangle, then:
[tex]\[ \angle A + \angle B = 90^\circ \][/tex]
This implies:
[tex]\[ \sin A = \cos B \][/tex]
### Step 2: Equating the Given Expressions
From the given information:
[tex]\[ \sin A = x + 2 \][/tex]
[tex]\[ \cos B = 2x - 5 \][/tex]
Since [tex]\( \sin A = \cos B \)[/tex]:
[tex]\[ x + 2 = 2x - 5 \][/tex]
### Step 3: Solving for [tex]\( x \)[/tex]
Let's isolate [tex]\( x \)[/tex] on one side of the equation:
[tex]\[ x + 2 = 2x - 5 \][/tex]
Subtract [tex]\( x \)[/tex] from both sides:
[tex]\[ 2 = x - 5 \][/tex]
Now, add 5 to both sides:
[tex]\[ 2 + 5 = x \][/tex]
Combine the constants:
[tex]\[ 7 = x \][/tex]
### Step 4: Checking the Validity
Given the options are:
- [tex]\( x = 2.33 \)[/tex]
- [tex]\( x = 29 \)[/tex]
- [tex]\( x = 7 \)[/tex]
- [tex]\( x = -7 \)[/tex]
The value we've found, [tex]\( x = 7 \)[/tex], is among the options.
### Conclusion
Therefore, the value of [tex]\( x \)[/tex] is:
[tex]\[ \boxed{7} \][/tex]
### Problem Setup:
We are given:
- [tex]\(\sin A = x + 2\)[/tex]
- [tex]\(\cos B = 2x - 5\)[/tex]
### Step 1: Understanding the Relationship
In a right triangle, the sum of the angles is [tex]\(90^\circ\)[/tex]. Therefore, if [tex]\(\angle A\)[/tex] and [tex]\(\angle B\)[/tex] are acute angles of a right triangle, then:
[tex]\[ \angle A + \angle B = 90^\circ \][/tex]
This implies:
[tex]\[ \sin A = \cos B \][/tex]
### Step 2: Equating the Given Expressions
From the given information:
[tex]\[ \sin A = x + 2 \][/tex]
[tex]\[ \cos B = 2x - 5 \][/tex]
Since [tex]\( \sin A = \cos B \)[/tex]:
[tex]\[ x + 2 = 2x - 5 \][/tex]
### Step 3: Solving for [tex]\( x \)[/tex]
Let's isolate [tex]\( x \)[/tex] on one side of the equation:
[tex]\[ x + 2 = 2x - 5 \][/tex]
Subtract [tex]\( x \)[/tex] from both sides:
[tex]\[ 2 = x - 5 \][/tex]
Now, add 5 to both sides:
[tex]\[ 2 + 5 = x \][/tex]
Combine the constants:
[tex]\[ 7 = x \][/tex]
### Step 4: Checking the Validity
Given the options are:
- [tex]\( x = 2.33 \)[/tex]
- [tex]\( x = 29 \)[/tex]
- [tex]\( x = 7 \)[/tex]
- [tex]\( x = -7 \)[/tex]
The value we've found, [tex]\( x = 7 \)[/tex], is among the options.
### Conclusion
Therefore, the value of [tex]\( x \)[/tex] is:
[tex]\[ \boxed{7} \][/tex]
Thank you for trusting us with your questions. We're here to help you find accurate answers quickly and efficiently. Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. Thank you for using Westonci.ca. Come back for more in-depth answers to all your queries.