Get reliable answers to your questions at Westonci.ca, where our knowledgeable community is always ready to help. Get immediate answers to your questions from a wide network of experienced professionals on our Q&A platform. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields.
Sagot :
Let's solve the given problem step by step.
### Problem Setup:
We are given:
- [tex]\(\sin A = x + 2\)[/tex]
- [tex]\(\cos B = 2x - 5\)[/tex]
### Step 1: Understanding the Relationship
In a right triangle, the sum of the angles is [tex]\(90^\circ\)[/tex]. Therefore, if [tex]\(\angle A\)[/tex] and [tex]\(\angle B\)[/tex] are acute angles of a right triangle, then:
[tex]\[ \angle A + \angle B = 90^\circ \][/tex]
This implies:
[tex]\[ \sin A = \cos B \][/tex]
### Step 2: Equating the Given Expressions
From the given information:
[tex]\[ \sin A = x + 2 \][/tex]
[tex]\[ \cos B = 2x - 5 \][/tex]
Since [tex]\( \sin A = \cos B \)[/tex]:
[tex]\[ x + 2 = 2x - 5 \][/tex]
### Step 3: Solving for [tex]\( x \)[/tex]
Let's isolate [tex]\( x \)[/tex] on one side of the equation:
[tex]\[ x + 2 = 2x - 5 \][/tex]
Subtract [tex]\( x \)[/tex] from both sides:
[tex]\[ 2 = x - 5 \][/tex]
Now, add 5 to both sides:
[tex]\[ 2 + 5 = x \][/tex]
Combine the constants:
[tex]\[ 7 = x \][/tex]
### Step 4: Checking the Validity
Given the options are:
- [tex]\( x = 2.33 \)[/tex]
- [tex]\( x = 29 \)[/tex]
- [tex]\( x = 7 \)[/tex]
- [tex]\( x = -7 \)[/tex]
The value we've found, [tex]\( x = 7 \)[/tex], is among the options.
### Conclusion
Therefore, the value of [tex]\( x \)[/tex] is:
[tex]\[ \boxed{7} \][/tex]
### Problem Setup:
We are given:
- [tex]\(\sin A = x + 2\)[/tex]
- [tex]\(\cos B = 2x - 5\)[/tex]
### Step 1: Understanding the Relationship
In a right triangle, the sum of the angles is [tex]\(90^\circ\)[/tex]. Therefore, if [tex]\(\angle A\)[/tex] and [tex]\(\angle B\)[/tex] are acute angles of a right triangle, then:
[tex]\[ \angle A + \angle B = 90^\circ \][/tex]
This implies:
[tex]\[ \sin A = \cos B \][/tex]
### Step 2: Equating the Given Expressions
From the given information:
[tex]\[ \sin A = x + 2 \][/tex]
[tex]\[ \cos B = 2x - 5 \][/tex]
Since [tex]\( \sin A = \cos B \)[/tex]:
[tex]\[ x + 2 = 2x - 5 \][/tex]
### Step 3: Solving for [tex]\( x \)[/tex]
Let's isolate [tex]\( x \)[/tex] on one side of the equation:
[tex]\[ x + 2 = 2x - 5 \][/tex]
Subtract [tex]\( x \)[/tex] from both sides:
[tex]\[ 2 = x - 5 \][/tex]
Now, add 5 to both sides:
[tex]\[ 2 + 5 = x \][/tex]
Combine the constants:
[tex]\[ 7 = x \][/tex]
### Step 4: Checking the Validity
Given the options are:
- [tex]\( x = 2.33 \)[/tex]
- [tex]\( x = 29 \)[/tex]
- [tex]\( x = 7 \)[/tex]
- [tex]\( x = -7 \)[/tex]
The value we've found, [tex]\( x = 7 \)[/tex], is among the options.
### Conclusion
Therefore, the value of [tex]\( x \)[/tex] is:
[tex]\[ \boxed{7} \][/tex]
Thank you for trusting us with your questions. We're here to help you find accurate answers quickly and efficiently. We hope our answers were useful. Return anytime for more information and answers to any other questions you have. We're glad you visited Westonci.ca. Return anytime for updated answers from our knowledgeable team.