Looking for answers? Westonci.ca is your go-to Q&A platform, offering quick, trustworthy responses from a community of experts. Explore thousands of questions and answers from a knowledgeable community of experts ready to help you find solutions. Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals.
Sagot :
To solve the equation [tex]\(x^2 + 2x = 19\)[/tex] by completing the square, follow these steps:
1. Identify the quadratic and linear terms: The given equation is [tex]\(x^2 + 2x = 19\)[/tex]. Notice that [tex]\(x^2\)[/tex] is the quadratic term and [tex]\(2x\)[/tex] is the linear term.
2. Add a term to both sides to complete the square: To complete the square, we need to form a perfect square trinomial on the left side. The coefficient of the linear term is 2.
3. Compute the needed term: Take half of the coefficient of [tex]\(x\)[/tex] (which is 2), divide by 2, and square it:
[tex]\[ \left(\frac{2}{2}\right)^2 = 1 \][/tex]
4. Add and subtract this term inside the equation: Add 1 to both sides of the equation to maintain equality:
[tex]\[ x^2 + 2x + 1 = 19 + 1 \][/tex]
5. Simplify both sides:
[tex]\[ x^2 + 2x + 1 = 20 \][/tex]
6. Express as a squared binomial: The left-hand side [tex]\(x^2 + 2x + 1\)[/tex] can be written as the square of a binomial:
[tex]\[ (x + 1)^2 = 20 \][/tex]
Therefore, the completed square form of the equation [tex]\(x^2 + 2x = 19\)[/tex] is [tex]\((x + 1)^2 = 20\)[/tex].
So, the correct answer is:
D. [tex]\((x + 1)^2 = 20\)[/tex]
1. Identify the quadratic and linear terms: The given equation is [tex]\(x^2 + 2x = 19\)[/tex]. Notice that [tex]\(x^2\)[/tex] is the quadratic term and [tex]\(2x\)[/tex] is the linear term.
2. Add a term to both sides to complete the square: To complete the square, we need to form a perfect square trinomial on the left side. The coefficient of the linear term is 2.
3. Compute the needed term: Take half of the coefficient of [tex]\(x\)[/tex] (which is 2), divide by 2, and square it:
[tex]\[ \left(\frac{2}{2}\right)^2 = 1 \][/tex]
4. Add and subtract this term inside the equation: Add 1 to both sides of the equation to maintain equality:
[tex]\[ x^2 + 2x + 1 = 19 + 1 \][/tex]
5. Simplify both sides:
[tex]\[ x^2 + 2x + 1 = 20 \][/tex]
6. Express as a squared binomial: The left-hand side [tex]\(x^2 + 2x + 1\)[/tex] can be written as the square of a binomial:
[tex]\[ (x + 1)^2 = 20 \][/tex]
Therefore, the completed square form of the equation [tex]\(x^2 + 2x = 19\)[/tex] is [tex]\((x + 1)^2 = 20\)[/tex].
So, the correct answer is:
D. [tex]\((x + 1)^2 = 20\)[/tex]
Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Thank you for using Westonci.ca. Come back for more in-depth answers to all your queries.