Welcome to Westonci.ca, the ultimate question and answer platform. Get expert answers to your questions quickly and accurately. Join our platform to connect with experts ready to provide accurate answers to your questions in various fields. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently.
Sagot :
To find the growth factor of your hourly wage over time, we need to analyze the sequence of wages given for different years and see by what factor the wage increases each year.
The following are the hourly wages you earned over those years:
- Time [tex]\( t = 0 \)[/tex] years (2004): [tex]$9.00 - Time \( t = 1 \) year: $[/tex]9.90
- Time [tex]\( t = 2 \)[/tex] years: [tex]$10.90 - Time \( t = 3 \) years: $[/tex]12.00
- Time [tex]\( t = 4 \)[/tex] years: [tex]$13.20 - Time \( t = 5 \) years: $[/tex]14.50
### Step-by-Step Solution:
1. Calculate the growth factors between consecutive years:
- Growth factor from [tex]\( t = 0 \)[/tex] to [tex]\( t = 1 \)[/tex]: [tex]\( \frac{9.90}{9.00} \)[/tex]
- Growth factor from [tex]\( t = 1 \)[/tex] to [tex]\( t = 2 \)[/tex]: [tex]\( \frac{10.90}{9.90} \)[/tex]
- Growth factor from [tex]\( t = 2 \)[/tex] to [tex]\( t = 3 \)[/tex]: [tex]\( \frac{12.00}{10.90} \)[/tex]
- Growth factor from [tex]\( t = 3 \)[/tex] to [tex]\( t = 4 \)[/tex]: [tex]\( \frac{13.20}{12.00} \)[/tex]
- Growth factor from [tex]\( t = 4 \)[/tex] to [tex]\( t = 5 \)[/tex]: [tex]\( \frac{14.50}{13.20} \)[/tex]
2. Simplify these fractions:
- [tex]\( \frac{9.90}{9.00} = 1.1 \)[/tex]
- [tex]\( \frac{10.90}{9.90} \approx 1.1 \)[/tex]
- [tex]\( \frac{12.00}{10.90} \approx 1.1 \)[/tex]
- [tex]\( \frac{13.20}{12.00} \approx 1.1 \)[/tex]
- [tex]\( \frac{14.50}{13.20} \approx 1.1 \)[/tex]
3. Determine the most common growth factor.
From these calculations, we can see that the growth factor between each year is consistently around [tex]\( 1.1 \)[/tex].
Therefore, the growth factor is:
D. [tex]\( 1.1 \)[/tex]
The following are the hourly wages you earned over those years:
- Time [tex]\( t = 0 \)[/tex] years (2004): [tex]$9.00 - Time \( t = 1 \) year: $[/tex]9.90
- Time [tex]\( t = 2 \)[/tex] years: [tex]$10.90 - Time \( t = 3 \) years: $[/tex]12.00
- Time [tex]\( t = 4 \)[/tex] years: [tex]$13.20 - Time \( t = 5 \) years: $[/tex]14.50
### Step-by-Step Solution:
1. Calculate the growth factors between consecutive years:
- Growth factor from [tex]\( t = 0 \)[/tex] to [tex]\( t = 1 \)[/tex]: [tex]\( \frac{9.90}{9.00} \)[/tex]
- Growth factor from [tex]\( t = 1 \)[/tex] to [tex]\( t = 2 \)[/tex]: [tex]\( \frac{10.90}{9.90} \)[/tex]
- Growth factor from [tex]\( t = 2 \)[/tex] to [tex]\( t = 3 \)[/tex]: [tex]\( \frac{12.00}{10.90} \)[/tex]
- Growth factor from [tex]\( t = 3 \)[/tex] to [tex]\( t = 4 \)[/tex]: [tex]\( \frac{13.20}{12.00} \)[/tex]
- Growth factor from [tex]\( t = 4 \)[/tex] to [tex]\( t = 5 \)[/tex]: [tex]\( \frac{14.50}{13.20} \)[/tex]
2. Simplify these fractions:
- [tex]\( \frac{9.90}{9.00} = 1.1 \)[/tex]
- [tex]\( \frac{10.90}{9.90} \approx 1.1 \)[/tex]
- [tex]\( \frac{12.00}{10.90} \approx 1.1 \)[/tex]
- [tex]\( \frac{13.20}{12.00} \approx 1.1 \)[/tex]
- [tex]\( \frac{14.50}{13.20} \approx 1.1 \)[/tex]
3. Determine the most common growth factor.
From these calculations, we can see that the growth factor between each year is consistently around [tex]\( 1.1 \)[/tex].
Therefore, the growth factor is:
D. [tex]\( 1.1 \)[/tex]
Thanks for stopping by. We are committed to providing the best answers for all your questions. See you again soon. Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. We're dedicated to helping you find the answers you need at Westonci.ca. Don't hesitate to return for more.