Westonci.ca connects you with experts who provide insightful answers to your questions. Join us today and start learning! Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently.
Sagot :
To find the exact values of the trigonometric functions given the conditions [tex]\( \sin \alpha = \frac{4}{5} \)[/tex] where [tex]\( 0 < \alpha < \frac{\pi}{2} \)[/tex] (meaning [tex]\(\alpha\)[/tex] is in the first quadrant) and [tex]\( \cos \beta = \frac{4\sqrt{97}}{97} \)[/tex] where [tex]\(-\frac{\pi}{2} < \beta < 0\)[/tex] (meaning [tex]\(\beta\)[/tex] is in the fourth quadrant), we will use the angle addition and subtraction formulas.
Step-by-Step Solution:
Firstly, let's determine [tex]\(\cos \alpha\)[/tex] and [tex]\(\sin \beta\)[/tex]:
1. Calculate [tex]\(\cos \alpha\)[/tex]:
We know [tex]\( \sin^2 \alpha + \cos^2 \alpha = 1 \)[/tex].
Given [tex]\( \sin \alpha = \frac{4}{5} \)[/tex],
[tex]\[ \sin^2 \alpha = \left(\frac{4}{5}\right)^2 = \frac{16}{25} \][/tex]
Thus,
[tex]\[ \cos^2 \alpha = 1 - \sin^2 \alpha = 1 - \frac{16}{25} = \frac{9}{25} \][/tex]
Since [tex]\( 0 < \alpha < \frac{\pi}{2} \)[/tex],
[tex]\[ \cos \alpha = \sqrt{\frac{9}{25}} = \frac{3}{5} \][/tex]
2. Calculate [tex]\(\sin \beta\)[/tex]:
We know [tex]\( \sin^2 \beta + \cos^2 \beta = 1 \)[/tex].
Given [tex]\( \cos \beta = \frac{4\sqrt{97}}{97} \)[/tex],
[tex]\[ \cos^2 \beta = \left(\frac{4\sqrt{97}}{97}\right)^2 = \frac{16 \cdot 97}{97^2} = \frac{16}{97} \][/tex]
Thus,
[tex]\[ \sin^2 \beta = 1 - \cos^2 \beta = 1 - \frac{16}{97} = \frac{81}{97} \][/tex]
Since [tex]\( -\frac{\pi}{2} < \beta < 0 \)[/tex], [tex]\(\beta\)[/tex] is in the fourth quadrant, where sine is negative,
[tex]\[ \sin \beta = -\sqrt{\frac{81}{97}} = -\frac{9}{\sqrt{97}} \][/tex]
Now we proceed to find the required values:
(a) [tex]\(\sin (\alpha + \beta)\)[/tex]:
[tex]\[ \sin (\alpha + \beta) = \sin \alpha \cos \beta + \cos \alpha \sin \beta \][/tex]
Substituting the known values,
[tex]\[ \sin (\alpha + \beta) = \left(\frac{4}{5}\right) \left(\frac{4\sqrt{97}}{97}\right) + \left(\frac{3}{5}\right) \left(-\frac{9}{\sqrt{97}}\right) \][/tex]
After simplification, we get
[tex]\[ \sin (\alpha + \beta) \approx -0.22337615632939606 \][/tex]
(b) [tex]\(\cos (\alpha + \beta)\)[/tex]:
[tex]\[ \cos (\alpha + \beta) = \cos \alpha \cos \beta - \sin \alpha \sin \beta \][/tex]
Substituting the known values,
[tex]\[ \cos (\alpha + \beta) = \left(\frac{3}{5}\right) \left(\frac{4\sqrt{97}}{97}\right) - \left(\frac{4}{5}\right) \left(-\frac{9}{\sqrt{97}}\right) \][/tex]
After simplification, we get
[tex]\[ \cos (\alpha + \beta) \approx 0.9747323185282742 \][/tex]
(c) [tex]\(\sin (\alpha - \beta)\)[/tex]:
[tex]\[ \sin (\alpha - \beta) = \sin \alpha \cos \beta - \cos \alpha \sin \beta \][/tex]
Substituting the known values,
[tex]\[ \sin (\alpha - \beta) = \left(\frac{4}{5}\right) \left(\frac{4\sqrt{97}}{97}\right) - \left(\frac{3}{5}\right) \left(-\frac{9}{\sqrt{97}}\right) \][/tex]
After simplification, we get
[tex]\[ \sin (\alpha - \beta) \approx 0.8731977020149122 \][/tex]
(d) [tex]\(\tan (\alpha - \beta)\)[/tex]:
We know,
[tex]\[ \tan (\alpha - \beta) = \frac{\sin (\alpha - \beta)}{\cos (\alpha - \beta)} \][/tex]
Using the values from parts (b) and (c),
[tex]\[ \cos (\alpha - \beta) = \cos (\alpha + \beta) \][/tex]
[tex]\[ \tan (\alpha - \beta) = \frac{\sin (\alpha - \beta)}{\cos (\alpha + \beta)} = \frac{0.8731977020149122}{0.9747323185282742} \][/tex]
After simplification, we get
[tex]\[ \tan (\alpha - \beta) \approx 0.8958333333333331 \][/tex]
Thus, the exact values are:
(a) [tex]\(\sin (\alpha + \beta) \approx -0.22337615632939606\)[/tex]
(b) [tex]\(\cos (\alpha + \beta) \approx 0.9747323185282742\)[/tex]
(c) [tex]\(\sin (\alpha - \beta) \approx 0.8731977020149122\)[/tex]
(d) [tex]\(\tan (\alpha - \beta) \approx 0.8958333333333331\)[/tex]
Step-by-Step Solution:
Firstly, let's determine [tex]\(\cos \alpha\)[/tex] and [tex]\(\sin \beta\)[/tex]:
1. Calculate [tex]\(\cos \alpha\)[/tex]:
We know [tex]\( \sin^2 \alpha + \cos^2 \alpha = 1 \)[/tex].
Given [tex]\( \sin \alpha = \frac{4}{5} \)[/tex],
[tex]\[ \sin^2 \alpha = \left(\frac{4}{5}\right)^2 = \frac{16}{25} \][/tex]
Thus,
[tex]\[ \cos^2 \alpha = 1 - \sin^2 \alpha = 1 - \frac{16}{25} = \frac{9}{25} \][/tex]
Since [tex]\( 0 < \alpha < \frac{\pi}{2} \)[/tex],
[tex]\[ \cos \alpha = \sqrt{\frac{9}{25}} = \frac{3}{5} \][/tex]
2. Calculate [tex]\(\sin \beta\)[/tex]:
We know [tex]\( \sin^2 \beta + \cos^2 \beta = 1 \)[/tex].
Given [tex]\( \cos \beta = \frac{4\sqrt{97}}{97} \)[/tex],
[tex]\[ \cos^2 \beta = \left(\frac{4\sqrt{97}}{97}\right)^2 = \frac{16 \cdot 97}{97^2} = \frac{16}{97} \][/tex]
Thus,
[tex]\[ \sin^2 \beta = 1 - \cos^2 \beta = 1 - \frac{16}{97} = \frac{81}{97} \][/tex]
Since [tex]\( -\frac{\pi}{2} < \beta < 0 \)[/tex], [tex]\(\beta\)[/tex] is in the fourth quadrant, where sine is negative,
[tex]\[ \sin \beta = -\sqrt{\frac{81}{97}} = -\frac{9}{\sqrt{97}} \][/tex]
Now we proceed to find the required values:
(a) [tex]\(\sin (\alpha + \beta)\)[/tex]:
[tex]\[ \sin (\alpha + \beta) = \sin \alpha \cos \beta + \cos \alpha \sin \beta \][/tex]
Substituting the known values,
[tex]\[ \sin (\alpha + \beta) = \left(\frac{4}{5}\right) \left(\frac{4\sqrt{97}}{97}\right) + \left(\frac{3}{5}\right) \left(-\frac{9}{\sqrt{97}}\right) \][/tex]
After simplification, we get
[tex]\[ \sin (\alpha + \beta) \approx -0.22337615632939606 \][/tex]
(b) [tex]\(\cos (\alpha + \beta)\)[/tex]:
[tex]\[ \cos (\alpha + \beta) = \cos \alpha \cos \beta - \sin \alpha \sin \beta \][/tex]
Substituting the known values,
[tex]\[ \cos (\alpha + \beta) = \left(\frac{3}{5}\right) \left(\frac{4\sqrt{97}}{97}\right) - \left(\frac{4}{5}\right) \left(-\frac{9}{\sqrt{97}}\right) \][/tex]
After simplification, we get
[tex]\[ \cos (\alpha + \beta) \approx 0.9747323185282742 \][/tex]
(c) [tex]\(\sin (\alpha - \beta)\)[/tex]:
[tex]\[ \sin (\alpha - \beta) = \sin \alpha \cos \beta - \cos \alpha \sin \beta \][/tex]
Substituting the known values,
[tex]\[ \sin (\alpha - \beta) = \left(\frac{4}{5}\right) \left(\frac{4\sqrt{97}}{97}\right) - \left(\frac{3}{5}\right) \left(-\frac{9}{\sqrt{97}}\right) \][/tex]
After simplification, we get
[tex]\[ \sin (\alpha - \beta) \approx 0.8731977020149122 \][/tex]
(d) [tex]\(\tan (\alpha - \beta)\)[/tex]:
We know,
[tex]\[ \tan (\alpha - \beta) = \frac{\sin (\alpha - \beta)}{\cos (\alpha - \beta)} \][/tex]
Using the values from parts (b) and (c),
[tex]\[ \cos (\alpha - \beta) = \cos (\alpha + \beta) \][/tex]
[tex]\[ \tan (\alpha - \beta) = \frac{\sin (\alpha - \beta)}{\cos (\alpha + \beta)} = \frac{0.8731977020149122}{0.9747323185282742} \][/tex]
After simplification, we get
[tex]\[ \tan (\alpha - \beta) \approx 0.8958333333333331 \][/tex]
Thus, the exact values are:
(a) [tex]\(\sin (\alpha + \beta) \approx -0.22337615632939606\)[/tex]
(b) [tex]\(\cos (\alpha + \beta) \approx 0.9747323185282742\)[/tex]
(c) [tex]\(\sin (\alpha - \beta) \approx 0.8731977020149122\)[/tex]
(d) [tex]\(\tan (\alpha - \beta) \approx 0.8958333333333331\)[/tex]
We hope our answers were helpful. Return anytime for more information and answers to any other questions you may have. We hope our answers were useful. Return anytime for more information and answers to any other questions you have. Get the answers you need at Westonci.ca. Stay informed by returning for our latest expert advice.