Looking for reliable answers? Westonci.ca is the ultimate Q&A platform where experts share their knowledge on various topics. Explore thousands of questions and answers from knowledgeable experts in various fields on our Q&A platform. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform.

Determine the domain of the function.

[tex]\[ f(x)=\frac{4x-9}{4x+8} \][/tex]

The domain is [tex]$\square$[/tex]. (Type your answer in interval notation.)

Sagot :

To determine the domain of the function
[tex]\[ f(x) = \frac{4x - 9}{4x + 8}, \][/tex]
we need to find all the values of [tex]\( x \)[/tex] for which the function is defined.

A function is undefined when its denominator equals zero, as division by zero is not allowed. Therefore, we need to find the values of [tex]\( x \)[/tex] where the denominator [tex]\( 4x + 8 \)[/tex] is zero.

1. Set the denominator equal to zero:
[tex]\[ 4x + 8 = 0 \][/tex]

2. Solve for [tex]\( x \)[/tex]:
[tex]\[ 4x + 8 = 0 \][/tex]
[tex]\[ 4x = -8 \][/tex]
[tex]\[ x = -2 \][/tex]

The denominator is zero when [tex]\( x = -2 \)[/tex]. Hence, the function [tex]\( f(x) \)[/tex] is undefined at [tex]\( x = -2 \)[/tex].

The domain of [tex]\( f(x) \)[/tex] includes all real numbers except [tex]\( x = -2 \)[/tex]. In interval notation, we express the domain by excluding [tex]\( -2 \)[/tex] from the set of all real numbers.

Thus, the domain of [tex]\( f(x) \)[/tex] is:
[tex]\[ (-\infty, -2) \cup (-2, \infty) \][/tex]

Therefore, the domain is
[tex]\[ \boxed{(-\infty, -2) \cup (-2, \infty)} \][/tex]