Westonci.ca is the Q&A platform that connects you with experts who provide accurate and detailed answers. Discover a wealth of knowledge from experts across different disciplines on our comprehensive Q&A platform. Get quick and reliable solutions to your questions from a community of experienced experts on our platform.
Sagot :
To determine the domain of the function
[tex]\[ f(x) = \frac{4x - 9}{4x + 8}, \][/tex]
we need to find all the values of [tex]\( x \)[/tex] for which the function is defined.
A function is undefined when its denominator equals zero, as division by zero is not allowed. Therefore, we need to find the values of [tex]\( x \)[/tex] where the denominator [tex]\( 4x + 8 \)[/tex] is zero.
1. Set the denominator equal to zero:
[tex]\[ 4x + 8 = 0 \][/tex]
2. Solve for [tex]\( x \)[/tex]:
[tex]\[ 4x + 8 = 0 \][/tex]
[tex]\[ 4x = -8 \][/tex]
[tex]\[ x = -2 \][/tex]
The denominator is zero when [tex]\( x = -2 \)[/tex]. Hence, the function [tex]\( f(x) \)[/tex] is undefined at [tex]\( x = -2 \)[/tex].
The domain of [tex]\( f(x) \)[/tex] includes all real numbers except [tex]\( x = -2 \)[/tex]. In interval notation, we express the domain by excluding [tex]\( -2 \)[/tex] from the set of all real numbers.
Thus, the domain of [tex]\( f(x) \)[/tex] is:
[tex]\[ (-\infty, -2) \cup (-2, \infty) \][/tex]
Therefore, the domain is
[tex]\[ \boxed{(-\infty, -2) \cup (-2, \infty)} \][/tex]
[tex]\[ f(x) = \frac{4x - 9}{4x + 8}, \][/tex]
we need to find all the values of [tex]\( x \)[/tex] for which the function is defined.
A function is undefined when its denominator equals zero, as division by zero is not allowed. Therefore, we need to find the values of [tex]\( x \)[/tex] where the denominator [tex]\( 4x + 8 \)[/tex] is zero.
1. Set the denominator equal to zero:
[tex]\[ 4x + 8 = 0 \][/tex]
2. Solve for [tex]\( x \)[/tex]:
[tex]\[ 4x + 8 = 0 \][/tex]
[tex]\[ 4x = -8 \][/tex]
[tex]\[ x = -2 \][/tex]
The denominator is zero when [tex]\( x = -2 \)[/tex]. Hence, the function [tex]\( f(x) \)[/tex] is undefined at [tex]\( x = -2 \)[/tex].
The domain of [tex]\( f(x) \)[/tex] includes all real numbers except [tex]\( x = -2 \)[/tex]. In interval notation, we express the domain by excluding [tex]\( -2 \)[/tex] from the set of all real numbers.
Thus, the domain of [tex]\( f(x) \)[/tex] is:
[tex]\[ (-\infty, -2) \cup (-2, \infty) \][/tex]
Therefore, the domain is
[tex]\[ \boxed{(-\infty, -2) \cup (-2, \infty)} \][/tex]
Thanks for stopping by. We are committed to providing the best answers for all your questions. See you again soon. Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. We're dedicated to helping you find the answers you need at Westonci.ca. Don't hesitate to return for more.