Westonci.ca is the ultimate Q&A platform, offering detailed and reliable answers from a knowledgeable community. Experience the convenience of getting reliable answers to your questions from a vast network of knowledgeable experts. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently.
Sagot :
To find the discriminant and the number of real roots for the quadratic equation [tex]\(4x^2 + 16x + 16 = 0\)[/tex], we follow these steps:
### Step 1: Identify the coefficients
The quadratic equation in standard form is [tex]\(ax^2 + bx + c = 0\)[/tex]. Here, we can identify:
- [tex]\(a = 4\)[/tex]
- [tex]\(b = 16\)[/tex]
- [tex]\(c = 16\)[/tex]
### Step 2: Calculate the discriminant
The discriminant [tex]\(\Delta\)[/tex] of a quadratic equation [tex]\(ax^2+bx+c=0\)[/tex] is given by the formula:
[tex]\[ \Delta = b^2 - 4ac \][/tex]
Substitute the values of [tex]\(a\)[/tex], [tex]\(b\)[/tex], and [tex]\(c\)[/tex] into the formula:
[tex]\[ \Delta = 16^2 - 4 \cdot 4 \cdot 16 \][/tex]
Calculate step-by-step:
[tex]\[ 16^2 = 256 \][/tex]
[tex]\[ 4 \cdot 4 = 16 \][/tex]
[tex]\[ 16 \cdot 16 = 256 \][/tex]
[tex]\[ \Delta = 256 - 256 = 0 \][/tex]
So, the discriminant [tex]\(\Delta\)[/tex] is [tex]\(0\)[/tex].
### Step 3: Determine the number of real roots
The number of real roots of a quadratic equation depends on the value of the discriminant:
- If [tex]\(\Delta > 0\)[/tex], there are two distinct real roots.
- If [tex]\(\Delta = 0\)[/tex], there is exactly one real root (a repeated root).
- If [tex]\(\Delta < 0\)[/tex], there are no real roots (the roots are complex).
In this case, since [tex]\(\Delta = 0\)[/tex], there is exactly one real root.
### Step 4: Choose the correct option
From the given options:
- A. -256 ; one real root
- B. -256 ; no real roots
- C. 0; two real roots
- D. 0; one real root
The correct option based on our calculations is:
[tex]\[ \boxed{\text{D. } 0; \text{ one real root}} \][/tex]
### Step 1: Identify the coefficients
The quadratic equation in standard form is [tex]\(ax^2 + bx + c = 0\)[/tex]. Here, we can identify:
- [tex]\(a = 4\)[/tex]
- [tex]\(b = 16\)[/tex]
- [tex]\(c = 16\)[/tex]
### Step 2: Calculate the discriminant
The discriminant [tex]\(\Delta\)[/tex] of a quadratic equation [tex]\(ax^2+bx+c=0\)[/tex] is given by the formula:
[tex]\[ \Delta = b^2 - 4ac \][/tex]
Substitute the values of [tex]\(a\)[/tex], [tex]\(b\)[/tex], and [tex]\(c\)[/tex] into the formula:
[tex]\[ \Delta = 16^2 - 4 \cdot 4 \cdot 16 \][/tex]
Calculate step-by-step:
[tex]\[ 16^2 = 256 \][/tex]
[tex]\[ 4 \cdot 4 = 16 \][/tex]
[tex]\[ 16 \cdot 16 = 256 \][/tex]
[tex]\[ \Delta = 256 - 256 = 0 \][/tex]
So, the discriminant [tex]\(\Delta\)[/tex] is [tex]\(0\)[/tex].
### Step 3: Determine the number of real roots
The number of real roots of a quadratic equation depends on the value of the discriminant:
- If [tex]\(\Delta > 0\)[/tex], there are two distinct real roots.
- If [tex]\(\Delta = 0\)[/tex], there is exactly one real root (a repeated root).
- If [tex]\(\Delta < 0\)[/tex], there are no real roots (the roots are complex).
In this case, since [tex]\(\Delta = 0\)[/tex], there is exactly one real root.
### Step 4: Choose the correct option
From the given options:
- A. -256 ; one real root
- B. -256 ; no real roots
- C. 0; two real roots
- D. 0; one real root
The correct option based on our calculations is:
[tex]\[ \boxed{\text{D. } 0; \text{ one real root}} \][/tex]
We appreciate your visit. Hopefully, the answers you found were beneficial. Don't hesitate to come back for more information. We appreciate your time. Please come back anytime for the latest information and answers to your questions. Your questions are important to us at Westonci.ca. Visit again for expert answers and reliable information.