Westonci.ca is your trusted source for accurate answers to all your questions. Join our community and start learning today! Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform.
Sagot :
Certainly! Here’s a detailed, step-by-step proof of why [tex]\(\angle A\)[/tex] and [tex]\(\angle C\)[/tex] are supplementary, and why [tex]\(\angle B\)[/tex] and [tex]\(\angle D\)[/tex] are supplementary, for a quadrilateral [tex]\(ABCD\)[/tex] inscribed in a circle.
---
### Step-by-Step Proof:
Given:
Quadrilateral [tex]\(ABCD\)[/tex] is inscribed in a circle.
To Prove:
1. [tex]\(\angle A\)[/tex] and [tex]\(\angle C\)[/tex] are supplementary.
2. [tex]\(\angle B\)[/tex] and [tex]\(\angle D\)[/tex] are supplementary.
### Proof for [tex]\(\angle A\)[/tex] and [tex]\(\angle C\)[/tex]:
1. Arc Measure Relationship:
- Let the measure of arc [tex]\(BCD\)[/tex] be [tex]\(a^\circ\)[/tex].
- Since [tex]\(BCD\)[/tex] and [tex]\(BAD\)[/tex] form the entire circle, the measure of arc [tex]\(BAD\)[/tex] is [tex]\(360^\circ - a^\circ\)[/tex].
2. Angle-Arc Relationship:
- From the inscribed angle theorem, the measure of an inscribed angle is half of the measure of the intercepted arc.
- Therefore, [tex]\(m \angle A = \frac{1}{2} \times \text{(measure of arc } BCD) = \frac{a}{2}\)[/tex].
- Similarly, [tex]\(m \angle C = \frac{1}{2} \times \text{(measure of arc } BAD) = \frac{360^\circ - a}{2}\)[/tex].
3. Sum of Angles A and C:
- Add [tex]\(m \angle A\)[/tex] and [tex]\(m \angle C\)[/tex]:
[tex]\[ m \angle A + m \angle C = \frac{a}{2} + \frac{360^\circ - a}{2} \][/tex]
- Simplify the expression:
[tex]\[ m \angle A + m \angle C = \frac{a + 360^\circ - a}{2} = \frac{360^\circ}{2} = 180^\circ \][/tex]
4. Conclusion:
- Since the sum of [tex]\(\angle A\)[/tex] and [tex]\(\angle C\)[/tex] is [tex]\(180^\circ\)[/tex], [tex]\(\angle A\)[/tex] and [tex]\(\angle C\)[/tex] are supplementary.
---
### Proof for [tex]\(\angle B\)[/tex] and [tex]\(\angle D\)[/tex]:
1. Sum of Angles in a Quadrilateral:
- The sum of the interior angles of a quadrilateral is always [tex]\(360^\circ\)[/tex]:
[tex]\[ m \angle A + m \angle B + m \angle C + m \angle D = 360^\circ \][/tex]
2. Use Supplementary Angles:
- From the previous proof, we know [tex]\(m \angle A + m \angle C = 180^\circ\)[/tex].
3. Determine Remaining Sum:
- Therefore:
[tex]\[ m \angle B + m \angle D = 360^\circ - (m \angle A + m \angle C) = 360^\circ - 180^\circ = 180^\circ \][/tex]
4. Conclusion:
- Since the sum of [tex]\(\angle B\)[/tex] and [tex]\(\angle D\)[/tex] is [tex]\(180^\circ\)[/tex], [tex]\(\angle B\)[/tex] and [tex]\(\angle D\)[/tex] are supplementary.
---
Thus, we have successfully proved that in a cyclic quadrilateral [tex]\(ABCD\)[/tex] inscribed in a circle, [tex]\(\angle A\)[/tex] and [tex]\(\angle C\)[/tex] are supplementary, and [tex]\(\angle B\)[/tex] and [tex]\(\angle D\)[/tex] are supplementary.
---
### Step-by-Step Proof:
Given:
Quadrilateral [tex]\(ABCD\)[/tex] is inscribed in a circle.
To Prove:
1. [tex]\(\angle A\)[/tex] and [tex]\(\angle C\)[/tex] are supplementary.
2. [tex]\(\angle B\)[/tex] and [tex]\(\angle D\)[/tex] are supplementary.
### Proof for [tex]\(\angle A\)[/tex] and [tex]\(\angle C\)[/tex]:
1. Arc Measure Relationship:
- Let the measure of arc [tex]\(BCD\)[/tex] be [tex]\(a^\circ\)[/tex].
- Since [tex]\(BCD\)[/tex] and [tex]\(BAD\)[/tex] form the entire circle, the measure of arc [tex]\(BAD\)[/tex] is [tex]\(360^\circ - a^\circ\)[/tex].
2. Angle-Arc Relationship:
- From the inscribed angle theorem, the measure of an inscribed angle is half of the measure of the intercepted arc.
- Therefore, [tex]\(m \angle A = \frac{1}{2} \times \text{(measure of arc } BCD) = \frac{a}{2}\)[/tex].
- Similarly, [tex]\(m \angle C = \frac{1}{2} \times \text{(measure of arc } BAD) = \frac{360^\circ - a}{2}\)[/tex].
3. Sum of Angles A and C:
- Add [tex]\(m \angle A\)[/tex] and [tex]\(m \angle C\)[/tex]:
[tex]\[ m \angle A + m \angle C = \frac{a}{2} + \frac{360^\circ - a}{2} \][/tex]
- Simplify the expression:
[tex]\[ m \angle A + m \angle C = \frac{a + 360^\circ - a}{2} = \frac{360^\circ}{2} = 180^\circ \][/tex]
4. Conclusion:
- Since the sum of [tex]\(\angle A\)[/tex] and [tex]\(\angle C\)[/tex] is [tex]\(180^\circ\)[/tex], [tex]\(\angle A\)[/tex] and [tex]\(\angle C\)[/tex] are supplementary.
---
### Proof for [tex]\(\angle B\)[/tex] and [tex]\(\angle D\)[/tex]:
1. Sum of Angles in a Quadrilateral:
- The sum of the interior angles of a quadrilateral is always [tex]\(360^\circ\)[/tex]:
[tex]\[ m \angle A + m \angle B + m \angle C + m \angle D = 360^\circ \][/tex]
2. Use Supplementary Angles:
- From the previous proof, we know [tex]\(m \angle A + m \angle C = 180^\circ\)[/tex].
3. Determine Remaining Sum:
- Therefore:
[tex]\[ m \angle B + m \angle D = 360^\circ - (m \angle A + m \angle C) = 360^\circ - 180^\circ = 180^\circ \][/tex]
4. Conclusion:
- Since the sum of [tex]\(\angle B\)[/tex] and [tex]\(\angle D\)[/tex] is [tex]\(180^\circ\)[/tex], [tex]\(\angle B\)[/tex] and [tex]\(\angle D\)[/tex] are supplementary.
---
Thus, we have successfully proved that in a cyclic quadrilateral [tex]\(ABCD\)[/tex] inscribed in a circle, [tex]\(\angle A\)[/tex] and [tex]\(\angle C\)[/tex] are supplementary, and [tex]\(\angle B\)[/tex] and [tex]\(\angle D\)[/tex] are supplementary.
Thanks for stopping by. We are committed to providing the best answers for all your questions. See you again soon. We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Keep exploring Westonci.ca for more insightful answers to your questions. We're here to help.