Discover answers to your questions with Westonci.ca, the leading Q&A platform that connects you with knowledgeable experts. Experience the ease of finding accurate answers to your questions from a knowledgeable community of professionals. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately.
Sagot :
Certainly! Here’s a detailed, step-by-step proof of why [tex]\(\angle A\)[/tex] and [tex]\(\angle C\)[/tex] are supplementary, and why [tex]\(\angle B\)[/tex] and [tex]\(\angle D\)[/tex] are supplementary, for a quadrilateral [tex]\(ABCD\)[/tex] inscribed in a circle.
---
### Step-by-Step Proof:
Given:
Quadrilateral [tex]\(ABCD\)[/tex] is inscribed in a circle.
To Prove:
1. [tex]\(\angle A\)[/tex] and [tex]\(\angle C\)[/tex] are supplementary.
2. [tex]\(\angle B\)[/tex] and [tex]\(\angle D\)[/tex] are supplementary.
### Proof for [tex]\(\angle A\)[/tex] and [tex]\(\angle C\)[/tex]:
1. Arc Measure Relationship:
- Let the measure of arc [tex]\(BCD\)[/tex] be [tex]\(a^\circ\)[/tex].
- Since [tex]\(BCD\)[/tex] and [tex]\(BAD\)[/tex] form the entire circle, the measure of arc [tex]\(BAD\)[/tex] is [tex]\(360^\circ - a^\circ\)[/tex].
2. Angle-Arc Relationship:
- From the inscribed angle theorem, the measure of an inscribed angle is half of the measure of the intercepted arc.
- Therefore, [tex]\(m \angle A = \frac{1}{2} \times \text{(measure of arc } BCD) = \frac{a}{2}\)[/tex].
- Similarly, [tex]\(m \angle C = \frac{1}{2} \times \text{(measure of arc } BAD) = \frac{360^\circ - a}{2}\)[/tex].
3. Sum of Angles A and C:
- Add [tex]\(m \angle A\)[/tex] and [tex]\(m \angle C\)[/tex]:
[tex]\[ m \angle A + m \angle C = \frac{a}{2} + \frac{360^\circ - a}{2} \][/tex]
- Simplify the expression:
[tex]\[ m \angle A + m \angle C = \frac{a + 360^\circ - a}{2} = \frac{360^\circ}{2} = 180^\circ \][/tex]
4. Conclusion:
- Since the sum of [tex]\(\angle A\)[/tex] and [tex]\(\angle C\)[/tex] is [tex]\(180^\circ\)[/tex], [tex]\(\angle A\)[/tex] and [tex]\(\angle C\)[/tex] are supplementary.
---
### Proof for [tex]\(\angle B\)[/tex] and [tex]\(\angle D\)[/tex]:
1. Sum of Angles in a Quadrilateral:
- The sum of the interior angles of a quadrilateral is always [tex]\(360^\circ\)[/tex]:
[tex]\[ m \angle A + m \angle B + m \angle C + m \angle D = 360^\circ \][/tex]
2. Use Supplementary Angles:
- From the previous proof, we know [tex]\(m \angle A + m \angle C = 180^\circ\)[/tex].
3. Determine Remaining Sum:
- Therefore:
[tex]\[ m \angle B + m \angle D = 360^\circ - (m \angle A + m \angle C) = 360^\circ - 180^\circ = 180^\circ \][/tex]
4. Conclusion:
- Since the sum of [tex]\(\angle B\)[/tex] and [tex]\(\angle D\)[/tex] is [tex]\(180^\circ\)[/tex], [tex]\(\angle B\)[/tex] and [tex]\(\angle D\)[/tex] are supplementary.
---
Thus, we have successfully proved that in a cyclic quadrilateral [tex]\(ABCD\)[/tex] inscribed in a circle, [tex]\(\angle A\)[/tex] and [tex]\(\angle C\)[/tex] are supplementary, and [tex]\(\angle B\)[/tex] and [tex]\(\angle D\)[/tex] are supplementary.
---
### Step-by-Step Proof:
Given:
Quadrilateral [tex]\(ABCD\)[/tex] is inscribed in a circle.
To Prove:
1. [tex]\(\angle A\)[/tex] and [tex]\(\angle C\)[/tex] are supplementary.
2. [tex]\(\angle B\)[/tex] and [tex]\(\angle D\)[/tex] are supplementary.
### Proof for [tex]\(\angle A\)[/tex] and [tex]\(\angle C\)[/tex]:
1. Arc Measure Relationship:
- Let the measure of arc [tex]\(BCD\)[/tex] be [tex]\(a^\circ\)[/tex].
- Since [tex]\(BCD\)[/tex] and [tex]\(BAD\)[/tex] form the entire circle, the measure of arc [tex]\(BAD\)[/tex] is [tex]\(360^\circ - a^\circ\)[/tex].
2. Angle-Arc Relationship:
- From the inscribed angle theorem, the measure of an inscribed angle is half of the measure of the intercepted arc.
- Therefore, [tex]\(m \angle A = \frac{1}{2} \times \text{(measure of arc } BCD) = \frac{a}{2}\)[/tex].
- Similarly, [tex]\(m \angle C = \frac{1}{2} \times \text{(measure of arc } BAD) = \frac{360^\circ - a}{2}\)[/tex].
3. Sum of Angles A and C:
- Add [tex]\(m \angle A\)[/tex] and [tex]\(m \angle C\)[/tex]:
[tex]\[ m \angle A + m \angle C = \frac{a}{2} + \frac{360^\circ - a}{2} \][/tex]
- Simplify the expression:
[tex]\[ m \angle A + m \angle C = \frac{a + 360^\circ - a}{2} = \frac{360^\circ}{2} = 180^\circ \][/tex]
4. Conclusion:
- Since the sum of [tex]\(\angle A\)[/tex] and [tex]\(\angle C\)[/tex] is [tex]\(180^\circ\)[/tex], [tex]\(\angle A\)[/tex] and [tex]\(\angle C\)[/tex] are supplementary.
---
### Proof for [tex]\(\angle B\)[/tex] and [tex]\(\angle D\)[/tex]:
1. Sum of Angles in a Quadrilateral:
- The sum of the interior angles of a quadrilateral is always [tex]\(360^\circ\)[/tex]:
[tex]\[ m \angle A + m \angle B + m \angle C + m \angle D = 360^\circ \][/tex]
2. Use Supplementary Angles:
- From the previous proof, we know [tex]\(m \angle A + m \angle C = 180^\circ\)[/tex].
3. Determine Remaining Sum:
- Therefore:
[tex]\[ m \angle B + m \angle D = 360^\circ - (m \angle A + m \angle C) = 360^\circ - 180^\circ = 180^\circ \][/tex]
4. Conclusion:
- Since the sum of [tex]\(\angle B\)[/tex] and [tex]\(\angle D\)[/tex] is [tex]\(180^\circ\)[/tex], [tex]\(\angle B\)[/tex] and [tex]\(\angle D\)[/tex] are supplementary.
---
Thus, we have successfully proved that in a cyclic quadrilateral [tex]\(ABCD\)[/tex] inscribed in a circle, [tex]\(\angle A\)[/tex] and [tex]\(\angle C\)[/tex] are supplementary, and [tex]\(\angle B\)[/tex] and [tex]\(\angle D\)[/tex] are supplementary.
Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. We hope our answers were useful. Return anytime for more information and answers to any other questions you have. Thank you for trusting Westonci.ca. Don't forget to revisit us for more accurate and insightful answers.