At Westonci.ca, we connect you with experts who provide detailed answers to your most pressing questions. Start exploring now! Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately.
Sagot :
Sure, let's go through each part of the question step-by-step:
### Part (a)
We are given the rule [tex]\((x, y) \rightarrow (x - 3, y + 4)\)[/tex]. We need to determine the output when the input is [tex]\((-6, 0)\)[/tex].
Follow these steps:
1. Take the [tex]\(x\)[/tex]-coordinate of the input [tex]\((-6, 0)\)[/tex], which is [tex]\(-6\)[/tex].
2. Apply the transformation to the [tex]\(x\)[/tex]-coordinate: [tex]\(x - 3\)[/tex]: [tex]\(-6 - 3 = -9\)[/tex].
3. Take the [tex]\(y\)[/tex]-coordinate of the input [tex]\((-6, 0)\)[/tex], which is [tex]\(0\)[/tex].
4. Apply the transformation to the [tex]\(y\)[/tex]-coordinate: [tex]\(y + 4\)[/tex]: [tex]\(0 + 4 = 4\)[/tex].
So, the output for the input [tex]\((-6, 0)\)[/tex] using the given rule is [tex]\((-9, 4)\)[/tex].
### Part (b)
Again, we are using the same rule [tex]\((x, y) \rightarrow (x - 3, y + 4)\)[/tex]. We need to determine the output when the input is [tex]\((3, -4)\)[/tex].
1. Take the [tex]\(x\)[/tex]-coordinate of the input [tex]\((3, -4)\)[/tex], which is [tex]\(3\)[/tex].
2. Apply the transformation to the [tex]\(x\)[/tex]-coordinate: [tex]\(x - 3\)[/tex]: [tex]\(3 - 3 = 0\)[/tex].
3. Take the [tex]\(y\)[/tex]-coordinate of the input [tex]\((3, -4)\)[/tex], which is [tex]\(-4\)[/tex].
4. Apply the transformation to the [tex]\(y\)[/tex]-coordinate: [tex]\(y + 4\)[/tex]: [tex]\(-4 + 4 = 0\)[/tex].
So, the output for the input [tex]\((3, -4)\)[/tex] using the given rule is [tex]\((0, 0)\)[/tex].
### Part (c)
To determine if the rule [tex]\((x, y) \rightarrow (x - 3, y + 4)\)[/tex] is a function, we need to check if each unique input [tex]\((x, y)\)[/tex] pair maps to a unique output [tex]\((x - 3, y + 4)\)[/tex] pair.
- For a function, each input should map to exactly one output.
- In this rule, for any given input coordinates [tex]\((x, y)\)[/tex], the output coordinates are calculated as [tex]\((x - 3, y + 4)\)[/tex].
This transformation involves basic arithmetic operations (subtraction and addition) that consistently produce one and only one output for each unique input pair. Therefore, each unique pair of input values [tex]\((x, y)\)[/tex] will generate a unique pair of output values [tex]\((x - 3, y + 4)\)[/tex].
Thus, the rule [tex]\((x, y) \rightarrow (x - 3, y + 4)\)[/tex] is indeed a function because it meets the criteria of mapping each unique input to one unique output.
### Summary Answer:
- (a) The output for input [tex]\((-6, 0)\)[/tex] is [tex]\((-9, 4)\)[/tex].
- (b) The output for input [tex]\((3, -4)\)[/tex] is [tex]\((0, 0)\)[/tex].
- (c) The rule is a function because each unique input [tex]\((x, y)\)[/tex] maps to exactly one unique output [tex]\((x - 3, y + 4)\)[/tex].
### Part (a)
We are given the rule [tex]\((x, y) \rightarrow (x - 3, y + 4)\)[/tex]. We need to determine the output when the input is [tex]\((-6, 0)\)[/tex].
Follow these steps:
1. Take the [tex]\(x\)[/tex]-coordinate of the input [tex]\((-6, 0)\)[/tex], which is [tex]\(-6\)[/tex].
2. Apply the transformation to the [tex]\(x\)[/tex]-coordinate: [tex]\(x - 3\)[/tex]: [tex]\(-6 - 3 = -9\)[/tex].
3. Take the [tex]\(y\)[/tex]-coordinate of the input [tex]\((-6, 0)\)[/tex], which is [tex]\(0\)[/tex].
4. Apply the transformation to the [tex]\(y\)[/tex]-coordinate: [tex]\(y + 4\)[/tex]: [tex]\(0 + 4 = 4\)[/tex].
So, the output for the input [tex]\((-6, 0)\)[/tex] using the given rule is [tex]\((-9, 4)\)[/tex].
### Part (b)
Again, we are using the same rule [tex]\((x, y) \rightarrow (x - 3, y + 4)\)[/tex]. We need to determine the output when the input is [tex]\((3, -4)\)[/tex].
1. Take the [tex]\(x\)[/tex]-coordinate of the input [tex]\((3, -4)\)[/tex], which is [tex]\(3\)[/tex].
2. Apply the transformation to the [tex]\(x\)[/tex]-coordinate: [tex]\(x - 3\)[/tex]: [tex]\(3 - 3 = 0\)[/tex].
3. Take the [tex]\(y\)[/tex]-coordinate of the input [tex]\((3, -4)\)[/tex], which is [tex]\(-4\)[/tex].
4. Apply the transformation to the [tex]\(y\)[/tex]-coordinate: [tex]\(y + 4\)[/tex]: [tex]\(-4 + 4 = 0\)[/tex].
So, the output for the input [tex]\((3, -4)\)[/tex] using the given rule is [tex]\((0, 0)\)[/tex].
### Part (c)
To determine if the rule [tex]\((x, y) \rightarrow (x - 3, y + 4)\)[/tex] is a function, we need to check if each unique input [tex]\((x, y)\)[/tex] pair maps to a unique output [tex]\((x - 3, y + 4)\)[/tex] pair.
- For a function, each input should map to exactly one output.
- In this rule, for any given input coordinates [tex]\((x, y)\)[/tex], the output coordinates are calculated as [tex]\((x - 3, y + 4)\)[/tex].
This transformation involves basic arithmetic operations (subtraction and addition) that consistently produce one and only one output for each unique input pair. Therefore, each unique pair of input values [tex]\((x, y)\)[/tex] will generate a unique pair of output values [tex]\((x - 3, y + 4)\)[/tex].
Thus, the rule [tex]\((x, y) \rightarrow (x - 3, y + 4)\)[/tex] is indeed a function because it meets the criteria of mapping each unique input to one unique output.
### Summary Answer:
- (a) The output for input [tex]\((-6, 0)\)[/tex] is [tex]\((-9, 4)\)[/tex].
- (b) The output for input [tex]\((3, -4)\)[/tex] is [tex]\((0, 0)\)[/tex].
- (c) The rule is a function because each unique input [tex]\((x, y)\)[/tex] maps to exactly one unique output [tex]\((x - 3, y + 4)\)[/tex].
Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. We hope this was helpful. Please come back whenever you need more information or answers to your queries. We're glad you visited Westonci.ca. Return anytime for updated answers from our knowledgeable team.