Get reliable answers to your questions at Westonci.ca, where our knowledgeable community is always ready to help. Ask your questions and receive detailed answers from professionals with extensive experience in various fields. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields.
Sagot :
Sure, let's go through each part of the question step-by-step:
### Part (a)
We are given the rule [tex]\((x, y) \rightarrow (x - 3, y + 4)\)[/tex]. We need to determine the output when the input is [tex]\((-6, 0)\)[/tex].
Follow these steps:
1. Take the [tex]\(x\)[/tex]-coordinate of the input [tex]\((-6, 0)\)[/tex], which is [tex]\(-6\)[/tex].
2. Apply the transformation to the [tex]\(x\)[/tex]-coordinate: [tex]\(x - 3\)[/tex]: [tex]\(-6 - 3 = -9\)[/tex].
3. Take the [tex]\(y\)[/tex]-coordinate of the input [tex]\((-6, 0)\)[/tex], which is [tex]\(0\)[/tex].
4. Apply the transformation to the [tex]\(y\)[/tex]-coordinate: [tex]\(y + 4\)[/tex]: [tex]\(0 + 4 = 4\)[/tex].
So, the output for the input [tex]\((-6, 0)\)[/tex] using the given rule is [tex]\((-9, 4)\)[/tex].
### Part (b)
Again, we are using the same rule [tex]\((x, y) \rightarrow (x - 3, y + 4)\)[/tex]. We need to determine the output when the input is [tex]\((3, -4)\)[/tex].
1. Take the [tex]\(x\)[/tex]-coordinate of the input [tex]\((3, -4)\)[/tex], which is [tex]\(3\)[/tex].
2. Apply the transformation to the [tex]\(x\)[/tex]-coordinate: [tex]\(x - 3\)[/tex]: [tex]\(3 - 3 = 0\)[/tex].
3. Take the [tex]\(y\)[/tex]-coordinate of the input [tex]\((3, -4)\)[/tex], which is [tex]\(-4\)[/tex].
4. Apply the transformation to the [tex]\(y\)[/tex]-coordinate: [tex]\(y + 4\)[/tex]: [tex]\(-4 + 4 = 0\)[/tex].
So, the output for the input [tex]\((3, -4)\)[/tex] using the given rule is [tex]\((0, 0)\)[/tex].
### Part (c)
To determine if the rule [tex]\((x, y) \rightarrow (x - 3, y + 4)\)[/tex] is a function, we need to check if each unique input [tex]\((x, y)\)[/tex] pair maps to a unique output [tex]\((x - 3, y + 4)\)[/tex] pair.
- For a function, each input should map to exactly one output.
- In this rule, for any given input coordinates [tex]\((x, y)\)[/tex], the output coordinates are calculated as [tex]\((x - 3, y + 4)\)[/tex].
This transformation involves basic arithmetic operations (subtraction and addition) that consistently produce one and only one output for each unique input pair. Therefore, each unique pair of input values [tex]\((x, y)\)[/tex] will generate a unique pair of output values [tex]\((x - 3, y + 4)\)[/tex].
Thus, the rule [tex]\((x, y) \rightarrow (x - 3, y + 4)\)[/tex] is indeed a function because it meets the criteria of mapping each unique input to one unique output.
### Summary Answer:
- (a) The output for input [tex]\((-6, 0)\)[/tex] is [tex]\((-9, 4)\)[/tex].
- (b) The output for input [tex]\((3, -4)\)[/tex] is [tex]\((0, 0)\)[/tex].
- (c) The rule is a function because each unique input [tex]\((x, y)\)[/tex] maps to exactly one unique output [tex]\((x - 3, y + 4)\)[/tex].
### Part (a)
We are given the rule [tex]\((x, y) \rightarrow (x - 3, y + 4)\)[/tex]. We need to determine the output when the input is [tex]\((-6, 0)\)[/tex].
Follow these steps:
1. Take the [tex]\(x\)[/tex]-coordinate of the input [tex]\((-6, 0)\)[/tex], which is [tex]\(-6\)[/tex].
2. Apply the transformation to the [tex]\(x\)[/tex]-coordinate: [tex]\(x - 3\)[/tex]: [tex]\(-6 - 3 = -9\)[/tex].
3. Take the [tex]\(y\)[/tex]-coordinate of the input [tex]\((-6, 0)\)[/tex], which is [tex]\(0\)[/tex].
4. Apply the transformation to the [tex]\(y\)[/tex]-coordinate: [tex]\(y + 4\)[/tex]: [tex]\(0 + 4 = 4\)[/tex].
So, the output for the input [tex]\((-6, 0)\)[/tex] using the given rule is [tex]\((-9, 4)\)[/tex].
### Part (b)
Again, we are using the same rule [tex]\((x, y) \rightarrow (x - 3, y + 4)\)[/tex]. We need to determine the output when the input is [tex]\((3, -4)\)[/tex].
1. Take the [tex]\(x\)[/tex]-coordinate of the input [tex]\((3, -4)\)[/tex], which is [tex]\(3\)[/tex].
2. Apply the transformation to the [tex]\(x\)[/tex]-coordinate: [tex]\(x - 3\)[/tex]: [tex]\(3 - 3 = 0\)[/tex].
3. Take the [tex]\(y\)[/tex]-coordinate of the input [tex]\((3, -4)\)[/tex], which is [tex]\(-4\)[/tex].
4. Apply the transformation to the [tex]\(y\)[/tex]-coordinate: [tex]\(y + 4\)[/tex]: [tex]\(-4 + 4 = 0\)[/tex].
So, the output for the input [tex]\((3, -4)\)[/tex] using the given rule is [tex]\((0, 0)\)[/tex].
### Part (c)
To determine if the rule [tex]\((x, y) \rightarrow (x - 3, y + 4)\)[/tex] is a function, we need to check if each unique input [tex]\((x, y)\)[/tex] pair maps to a unique output [tex]\((x - 3, y + 4)\)[/tex] pair.
- For a function, each input should map to exactly one output.
- In this rule, for any given input coordinates [tex]\((x, y)\)[/tex], the output coordinates are calculated as [tex]\((x - 3, y + 4)\)[/tex].
This transformation involves basic arithmetic operations (subtraction and addition) that consistently produce one and only one output for each unique input pair. Therefore, each unique pair of input values [tex]\((x, y)\)[/tex] will generate a unique pair of output values [tex]\((x - 3, y + 4)\)[/tex].
Thus, the rule [tex]\((x, y) \rightarrow (x - 3, y + 4)\)[/tex] is indeed a function because it meets the criteria of mapping each unique input to one unique output.
### Summary Answer:
- (a) The output for input [tex]\((-6, 0)\)[/tex] is [tex]\((-9, 4)\)[/tex].
- (b) The output for input [tex]\((3, -4)\)[/tex] is [tex]\((0, 0)\)[/tex].
- (c) The rule is a function because each unique input [tex]\((x, y)\)[/tex] maps to exactly one unique output [tex]\((x - 3, y + 4)\)[/tex].
Thank you for visiting our platform. We hope you found the answers you were looking for. Come back anytime you need more information. Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. Westonci.ca is here to provide the answers you seek. Return often for more expert solutions.