Welcome to Westonci.ca, the place where your questions are answered by a community of knowledgeable contributors. Discover precise answers to your questions from a wide range of experts on our user-friendly Q&A platform. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently.
Sagot :
Sure, let's go through each part of the question step-by-step:
### Part (a)
We are given the rule [tex]\((x, y) \rightarrow (x - 3, y + 4)\)[/tex]. We need to determine the output when the input is [tex]\((-6, 0)\)[/tex].
Follow these steps:
1. Take the [tex]\(x\)[/tex]-coordinate of the input [tex]\((-6, 0)\)[/tex], which is [tex]\(-6\)[/tex].
2. Apply the transformation to the [tex]\(x\)[/tex]-coordinate: [tex]\(x - 3\)[/tex]: [tex]\(-6 - 3 = -9\)[/tex].
3. Take the [tex]\(y\)[/tex]-coordinate of the input [tex]\((-6, 0)\)[/tex], which is [tex]\(0\)[/tex].
4. Apply the transformation to the [tex]\(y\)[/tex]-coordinate: [tex]\(y + 4\)[/tex]: [tex]\(0 + 4 = 4\)[/tex].
So, the output for the input [tex]\((-6, 0)\)[/tex] using the given rule is [tex]\((-9, 4)\)[/tex].
### Part (b)
Again, we are using the same rule [tex]\((x, y) \rightarrow (x - 3, y + 4)\)[/tex]. We need to determine the output when the input is [tex]\((3, -4)\)[/tex].
1. Take the [tex]\(x\)[/tex]-coordinate of the input [tex]\((3, -4)\)[/tex], which is [tex]\(3\)[/tex].
2. Apply the transformation to the [tex]\(x\)[/tex]-coordinate: [tex]\(x - 3\)[/tex]: [tex]\(3 - 3 = 0\)[/tex].
3. Take the [tex]\(y\)[/tex]-coordinate of the input [tex]\((3, -4)\)[/tex], which is [tex]\(-4\)[/tex].
4. Apply the transformation to the [tex]\(y\)[/tex]-coordinate: [tex]\(y + 4\)[/tex]: [tex]\(-4 + 4 = 0\)[/tex].
So, the output for the input [tex]\((3, -4)\)[/tex] using the given rule is [tex]\((0, 0)\)[/tex].
### Part (c)
To determine if the rule [tex]\((x, y) \rightarrow (x - 3, y + 4)\)[/tex] is a function, we need to check if each unique input [tex]\((x, y)\)[/tex] pair maps to a unique output [tex]\((x - 3, y + 4)\)[/tex] pair.
- For a function, each input should map to exactly one output.
- In this rule, for any given input coordinates [tex]\((x, y)\)[/tex], the output coordinates are calculated as [tex]\((x - 3, y + 4)\)[/tex].
This transformation involves basic arithmetic operations (subtraction and addition) that consistently produce one and only one output for each unique input pair. Therefore, each unique pair of input values [tex]\((x, y)\)[/tex] will generate a unique pair of output values [tex]\((x - 3, y + 4)\)[/tex].
Thus, the rule [tex]\((x, y) \rightarrow (x - 3, y + 4)\)[/tex] is indeed a function because it meets the criteria of mapping each unique input to one unique output.
### Summary Answer:
- (a) The output for input [tex]\((-6, 0)\)[/tex] is [tex]\((-9, 4)\)[/tex].
- (b) The output for input [tex]\((3, -4)\)[/tex] is [tex]\((0, 0)\)[/tex].
- (c) The rule is a function because each unique input [tex]\((x, y)\)[/tex] maps to exactly one unique output [tex]\((x - 3, y + 4)\)[/tex].
### Part (a)
We are given the rule [tex]\((x, y) \rightarrow (x - 3, y + 4)\)[/tex]. We need to determine the output when the input is [tex]\((-6, 0)\)[/tex].
Follow these steps:
1. Take the [tex]\(x\)[/tex]-coordinate of the input [tex]\((-6, 0)\)[/tex], which is [tex]\(-6\)[/tex].
2. Apply the transformation to the [tex]\(x\)[/tex]-coordinate: [tex]\(x - 3\)[/tex]: [tex]\(-6 - 3 = -9\)[/tex].
3. Take the [tex]\(y\)[/tex]-coordinate of the input [tex]\((-6, 0)\)[/tex], which is [tex]\(0\)[/tex].
4. Apply the transformation to the [tex]\(y\)[/tex]-coordinate: [tex]\(y + 4\)[/tex]: [tex]\(0 + 4 = 4\)[/tex].
So, the output for the input [tex]\((-6, 0)\)[/tex] using the given rule is [tex]\((-9, 4)\)[/tex].
### Part (b)
Again, we are using the same rule [tex]\((x, y) \rightarrow (x - 3, y + 4)\)[/tex]. We need to determine the output when the input is [tex]\((3, -4)\)[/tex].
1. Take the [tex]\(x\)[/tex]-coordinate of the input [tex]\((3, -4)\)[/tex], which is [tex]\(3\)[/tex].
2. Apply the transformation to the [tex]\(x\)[/tex]-coordinate: [tex]\(x - 3\)[/tex]: [tex]\(3 - 3 = 0\)[/tex].
3. Take the [tex]\(y\)[/tex]-coordinate of the input [tex]\((3, -4)\)[/tex], which is [tex]\(-4\)[/tex].
4. Apply the transformation to the [tex]\(y\)[/tex]-coordinate: [tex]\(y + 4\)[/tex]: [tex]\(-4 + 4 = 0\)[/tex].
So, the output for the input [tex]\((3, -4)\)[/tex] using the given rule is [tex]\((0, 0)\)[/tex].
### Part (c)
To determine if the rule [tex]\((x, y) \rightarrow (x - 3, y + 4)\)[/tex] is a function, we need to check if each unique input [tex]\((x, y)\)[/tex] pair maps to a unique output [tex]\((x - 3, y + 4)\)[/tex] pair.
- For a function, each input should map to exactly one output.
- In this rule, for any given input coordinates [tex]\((x, y)\)[/tex], the output coordinates are calculated as [tex]\((x - 3, y + 4)\)[/tex].
This transformation involves basic arithmetic operations (subtraction and addition) that consistently produce one and only one output for each unique input pair. Therefore, each unique pair of input values [tex]\((x, y)\)[/tex] will generate a unique pair of output values [tex]\((x - 3, y + 4)\)[/tex].
Thus, the rule [tex]\((x, y) \rightarrow (x - 3, y + 4)\)[/tex] is indeed a function because it meets the criteria of mapping each unique input to one unique output.
### Summary Answer:
- (a) The output for input [tex]\((-6, 0)\)[/tex] is [tex]\((-9, 4)\)[/tex].
- (b) The output for input [tex]\((3, -4)\)[/tex] is [tex]\((0, 0)\)[/tex].
- (c) The rule is a function because each unique input [tex]\((x, y)\)[/tex] maps to exactly one unique output [tex]\((x - 3, y + 4)\)[/tex].
Thank you for trusting us with your questions. We're here to help you find accurate answers quickly and efficiently. We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Thank you for visiting Westonci.ca, your go-to source for reliable answers. Come back soon for more expert insights.