Westonci.ca is your trusted source for finding answers to all your questions. Ask, explore, and learn with our expert community. Discover the answers you need from a community of experts ready to help you with their knowledge and experience in various fields. Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals.
Sagot :
To solve this problem, we need to determine how long it will take for 36 grams of plutonium-240 to decay to 12 grams, given the decay constant [tex]\(k = 0.00011\)[/tex]. The decay follows the exponential decay function [tex]\(Q(t) = Q_0 e^{-kt}\)[/tex], where [tex]\(Q_0\)[/tex] is the initial quantity and [tex]\(Q(t)\)[/tex] is the quantity remaining after [tex]\(t\)[/tex] years.
Here are the steps to find the time [tex]\(t\)[/tex]:
1. Initial and Final Quantities:
- Initial quantity, [tex]\(Q_0 = 36\)[/tex] grams.
- Final quantity, [tex]\(Q(t) = 12\)[/tex] grams.
2. Set Up the Equation:
Plugging in the values into the decay formula:
[tex]\[ 12 = 36 \cdot e^{-0.00011t} \][/tex]
3. Isolate the Exponential Term:
Divide both sides by 36 to simplify:
[tex]\[ \frac{12}{36} = e^{-0.00011t} \][/tex]
[tex]\[ \frac{1}{3} = e^{-0.00011t} \][/tex]
4. Apply the Natural Logarithm:
To solve for [tex]\(t\)[/tex], take the natural logarithm (ln) of both sides:
[tex]\[ \ln\left(\frac{1}{3}\right) = \ln\left(e^{-0.00011t}\right) \][/tex]
Using the property of logarithms [tex]\(\ln(e^x) = x\)[/tex], we get:
[tex]\[ \ln\left(\frac{1}{3}\right) = -0.00011t \][/tex]
5. Solve for [tex]\(t\)[/tex]:
Divide both sides by [tex]\(-0.00011\)[/tex]:
[tex]\[ t = \frac{\ln\left(\frac{1}{3}\right)}{-0.00011} \][/tex]
6. Calculate the Time:
[tex]\[ t \approx 9987.384442437362 \text{ years} \][/tex]
7. Round to the Nearest 10 Years:
The final result rounded to the nearest 10 years is approximately:
[tex]\[ t_{\text{rounded}} \approx 9990 \text{ years} \][/tex]
Hence, the answer is B. 9,990 years.
Here are the steps to find the time [tex]\(t\)[/tex]:
1. Initial and Final Quantities:
- Initial quantity, [tex]\(Q_0 = 36\)[/tex] grams.
- Final quantity, [tex]\(Q(t) = 12\)[/tex] grams.
2. Set Up the Equation:
Plugging in the values into the decay formula:
[tex]\[ 12 = 36 \cdot e^{-0.00011t} \][/tex]
3. Isolate the Exponential Term:
Divide both sides by 36 to simplify:
[tex]\[ \frac{12}{36} = e^{-0.00011t} \][/tex]
[tex]\[ \frac{1}{3} = e^{-0.00011t} \][/tex]
4. Apply the Natural Logarithm:
To solve for [tex]\(t\)[/tex], take the natural logarithm (ln) of both sides:
[tex]\[ \ln\left(\frac{1}{3}\right) = \ln\left(e^{-0.00011t}\right) \][/tex]
Using the property of logarithms [tex]\(\ln(e^x) = x\)[/tex], we get:
[tex]\[ \ln\left(\frac{1}{3}\right) = -0.00011t \][/tex]
5. Solve for [tex]\(t\)[/tex]:
Divide both sides by [tex]\(-0.00011\)[/tex]:
[tex]\[ t = \frac{\ln\left(\frac{1}{3}\right)}{-0.00011} \][/tex]
6. Calculate the Time:
[tex]\[ t \approx 9987.384442437362 \text{ years} \][/tex]
7. Round to the Nearest 10 Years:
The final result rounded to the nearest 10 years is approximately:
[tex]\[ t_{\text{rounded}} \approx 9990 \text{ years} \][/tex]
Hence, the answer is B. 9,990 years.
We appreciate your visit. Hopefully, the answers you found were beneficial. Don't hesitate to come back for more information. Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. We're here to help at Westonci.ca. Keep visiting for the best answers to your questions.