Westonci.ca is the ultimate Q&A platform, offering detailed and reliable answers from a knowledgeable community. Join our Q&A platform and connect with professionals ready to provide precise answers to your questions in various areas. Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform.
Sagot :
Between the first and the second steps, the process that took place is "Completing the square."
Here's a detailed explanation:
1. Original Equation:
[tex]\[ x^2 + \frac{b}{a} x = -\frac{c}{a} \][/tex]
2. Completing the Square:
To complete the square, we add and subtract the same value on the left-hand side to form a perfect square trinomial. The value added and subtracted to complete the square is [tex]\(\left(\frac{b}{2a}\right)^2\)[/tex].
3. Forming the Perfect Square Trinomial:
[tex]\[ x^2 + \frac{b}{a} x + \left(\frac{b}{2a}\right)^2 = -\frac{c}{a} + \left(\frac{b}{2a}\right)^2 \][/tex]
By adding [tex]\(\left(\frac{b}{2a}\right)^2\)[/tex] to both sides of the equation, the left-hand side of the equation becomes a perfect square trinomial. This transformation allows us to rewrite the quadratic equation in a form that is easier to solve by further steps, ultimately leading to the quadratic formula.
So, the correct answer is:
A. Completing the square
Here's a detailed explanation:
1. Original Equation:
[tex]\[ x^2 + \frac{b}{a} x = -\frac{c}{a} \][/tex]
2. Completing the Square:
To complete the square, we add and subtract the same value on the left-hand side to form a perfect square trinomial. The value added and subtracted to complete the square is [tex]\(\left(\frac{b}{2a}\right)^2\)[/tex].
3. Forming the Perfect Square Trinomial:
[tex]\[ x^2 + \frac{b}{a} x + \left(\frac{b}{2a}\right)^2 = -\frac{c}{a} + \left(\frac{b}{2a}\right)^2 \][/tex]
By adding [tex]\(\left(\frac{b}{2a}\right)^2\)[/tex] to both sides of the equation, the left-hand side of the equation becomes a perfect square trinomial. This transformation allows us to rewrite the quadratic equation in a form that is easier to solve by further steps, ultimately leading to the quadratic formula.
So, the correct answer is:
A. Completing the square
We appreciate your time. Please revisit us for more reliable answers to any questions you may have. Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. Thank you for using Westonci.ca. Come back for more in-depth answers to all your queries.