Westonci.ca is the premier destination for reliable answers to your questions, provided by a community of experts. Connect with a community of experts ready to help you find accurate solutions to your questions quickly and efficiently. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts.
Sagot :
Sure, let's solve these problems step-by-step:
### (a) Find an angle between [tex]\(0\)[/tex] and [tex]\(2\pi\)[/tex] that is coterminal with [tex]\(\frac{33\pi}{10}\)[/tex].
1. Understanding Coterminal Angles:
An angle is coterminal with another if they share the same terminal side when drawn in standard position. Coterminal angles can be found by adding or subtracting full rotations ( [tex]\(2\pi \)[/tex] radians) from the given angle.
2. Given Angle:
[tex]\[\frac{33\pi}{10}\][/tex]
3. Convert the Given Angle:
Let's reduce [tex]\(\frac{33\pi}{10}\)[/tex] to an angle within the range [tex]\(0\)[/tex] to [tex]\(2\pi\)[/tex].
[tex]\[ \frac{33\pi}{10} \quad \text{is more than } 2\pi \; (\approx 6.2832) \][/tex]
4. Subtract a Full Rotation:
[tex]\[ \frac{33\pi}{10} - 2\pi \times k \quad \text{where } k \text{ is an integer} \][/tex]
Since [tex]\(\frac{33\pi}{10}\)[/tex] is less than [tex]\(4\pi \)[/tex], we need to subtract only one [tex]\(2\pi\)[/tex] rotation:
[tex]\[ \frac{33\pi}{10} - 2\pi = \frac{33\pi}{10} - \frac{20\pi}{10} = \frac{13\pi}{10} \][/tex]
Here, [tex]\(\frac{13\pi}{10}\)[/tex] is already within the range [tex]\(0\)[/tex] to [tex]\(2\pi\)[/tex].
5. Coterminal Angle:
[tex]\[ \boxed{\frac{13\pi}{10}} \][/tex]
### (b) Find an angle between [tex]\(0^{\circ}\)[/tex] and [tex]\(360^{\circ}\)[/tex] that is coterminal with [tex]\(930^{\circ}\)[/tex].
1. Understanding Coterminal Angles:
Similarly, for degrees, an angle is coterminal if it is the same as the given angle plus or minus multiples of [tex]\(360^\circ\)[/tex] (a full rotation).
2. Given Angle:
[tex]\(930^\circ\)[/tex]
3. Convert the Given Angle:
Let's reduce [tex]\(930^\circ\)[/tex] to an angle within the range [tex]\(0^\circ\)[/tex] to [tex]\(360^\circ\)[/tex].
4. Subtract Full Rotations:
[tex]\[ 930^\circ \mod 360^\circ \][/tex]
This means we subtract multiples of [tex]\(360^\circ\)[/tex] until the result is within [tex]\(0^\circ\)[/tex] to [tex]\(360^\circ\)[/tex].
[tex]\[ 930^\circ - 2 \times 360^\circ = 930^\circ - 720^\circ = 210^\circ \][/tex]
Here [tex]\(210^\circ\)[/tex] is already within the range [tex]\(0^\circ\)[/tex] to [tex]\(360^\circ\)[/tex].
5. Coterminal Angle:
[tex]\[ \boxed{210^\circ} \][/tex]
So, the final answers are:
- (a) [tex]\(\frac{13\pi}{10}\)[/tex]
- (b) [tex]\(210^\circ\)[/tex]
### (a) Find an angle between [tex]\(0\)[/tex] and [tex]\(2\pi\)[/tex] that is coterminal with [tex]\(\frac{33\pi}{10}\)[/tex].
1. Understanding Coterminal Angles:
An angle is coterminal with another if they share the same terminal side when drawn in standard position. Coterminal angles can be found by adding or subtracting full rotations ( [tex]\(2\pi \)[/tex] radians) from the given angle.
2. Given Angle:
[tex]\[\frac{33\pi}{10}\][/tex]
3. Convert the Given Angle:
Let's reduce [tex]\(\frac{33\pi}{10}\)[/tex] to an angle within the range [tex]\(0\)[/tex] to [tex]\(2\pi\)[/tex].
[tex]\[ \frac{33\pi}{10} \quad \text{is more than } 2\pi \; (\approx 6.2832) \][/tex]
4. Subtract a Full Rotation:
[tex]\[ \frac{33\pi}{10} - 2\pi \times k \quad \text{where } k \text{ is an integer} \][/tex]
Since [tex]\(\frac{33\pi}{10}\)[/tex] is less than [tex]\(4\pi \)[/tex], we need to subtract only one [tex]\(2\pi\)[/tex] rotation:
[tex]\[ \frac{33\pi}{10} - 2\pi = \frac{33\pi}{10} - \frac{20\pi}{10} = \frac{13\pi}{10} \][/tex]
Here, [tex]\(\frac{13\pi}{10}\)[/tex] is already within the range [tex]\(0\)[/tex] to [tex]\(2\pi\)[/tex].
5. Coterminal Angle:
[tex]\[ \boxed{\frac{13\pi}{10}} \][/tex]
### (b) Find an angle between [tex]\(0^{\circ}\)[/tex] and [tex]\(360^{\circ}\)[/tex] that is coterminal with [tex]\(930^{\circ}\)[/tex].
1. Understanding Coterminal Angles:
Similarly, for degrees, an angle is coterminal if it is the same as the given angle plus or minus multiples of [tex]\(360^\circ\)[/tex] (a full rotation).
2. Given Angle:
[tex]\(930^\circ\)[/tex]
3. Convert the Given Angle:
Let's reduce [tex]\(930^\circ\)[/tex] to an angle within the range [tex]\(0^\circ\)[/tex] to [tex]\(360^\circ\)[/tex].
4. Subtract Full Rotations:
[tex]\[ 930^\circ \mod 360^\circ \][/tex]
This means we subtract multiples of [tex]\(360^\circ\)[/tex] until the result is within [tex]\(0^\circ\)[/tex] to [tex]\(360^\circ\)[/tex].
[tex]\[ 930^\circ - 2 \times 360^\circ = 930^\circ - 720^\circ = 210^\circ \][/tex]
Here [tex]\(210^\circ\)[/tex] is already within the range [tex]\(0^\circ\)[/tex] to [tex]\(360^\circ\)[/tex].
5. Coterminal Angle:
[tex]\[ \boxed{210^\circ} \][/tex]
So, the final answers are:
- (a) [tex]\(\frac{13\pi}{10}\)[/tex]
- (b) [tex]\(210^\circ\)[/tex]
Thanks for stopping by. We are committed to providing the best answers for all your questions. See you again soon. Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. Westonci.ca is here to provide the answers you seek. Return often for more expert solutions.