Westonci.ca offers quick and accurate answers to your questions. Join our community and get the insights you need today. Connect with a community of experts ready to provide precise solutions to your questions on our user-friendly Q&A platform. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform.
Sagot :
Sure, let's solve these problems step-by-step:
### (a) Find an angle between [tex]\(0\)[/tex] and [tex]\(2\pi\)[/tex] that is coterminal with [tex]\(\frac{33\pi}{10}\)[/tex].
1. Understanding Coterminal Angles:
An angle is coterminal with another if they share the same terminal side when drawn in standard position. Coterminal angles can be found by adding or subtracting full rotations ( [tex]\(2\pi \)[/tex] radians) from the given angle.
2. Given Angle:
[tex]\[\frac{33\pi}{10}\][/tex]
3. Convert the Given Angle:
Let's reduce [tex]\(\frac{33\pi}{10}\)[/tex] to an angle within the range [tex]\(0\)[/tex] to [tex]\(2\pi\)[/tex].
[tex]\[ \frac{33\pi}{10} \quad \text{is more than } 2\pi \; (\approx 6.2832) \][/tex]
4. Subtract a Full Rotation:
[tex]\[ \frac{33\pi}{10} - 2\pi \times k \quad \text{where } k \text{ is an integer} \][/tex]
Since [tex]\(\frac{33\pi}{10}\)[/tex] is less than [tex]\(4\pi \)[/tex], we need to subtract only one [tex]\(2\pi\)[/tex] rotation:
[tex]\[ \frac{33\pi}{10} - 2\pi = \frac{33\pi}{10} - \frac{20\pi}{10} = \frac{13\pi}{10} \][/tex]
Here, [tex]\(\frac{13\pi}{10}\)[/tex] is already within the range [tex]\(0\)[/tex] to [tex]\(2\pi\)[/tex].
5. Coterminal Angle:
[tex]\[ \boxed{\frac{13\pi}{10}} \][/tex]
### (b) Find an angle between [tex]\(0^{\circ}\)[/tex] and [tex]\(360^{\circ}\)[/tex] that is coterminal with [tex]\(930^{\circ}\)[/tex].
1. Understanding Coterminal Angles:
Similarly, for degrees, an angle is coterminal if it is the same as the given angle plus or minus multiples of [tex]\(360^\circ\)[/tex] (a full rotation).
2. Given Angle:
[tex]\(930^\circ\)[/tex]
3. Convert the Given Angle:
Let's reduce [tex]\(930^\circ\)[/tex] to an angle within the range [tex]\(0^\circ\)[/tex] to [tex]\(360^\circ\)[/tex].
4. Subtract Full Rotations:
[tex]\[ 930^\circ \mod 360^\circ \][/tex]
This means we subtract multiples of [tex]\(360^\circ\)[/tex] until the result is within [tex]\(0^\circ\)[/tex] to [tex]\(360^\circ\)[/tex].
[tex]\[ 930^\circ - 2 \times 360^\circ = 930^\circ - 720^\circ = 210^\circ \][/tex]
Here [tex]\(210^\circ\)[/tex] is already within the range [tex]\(0^\circ\)[/tex] to [tex]\(360^\circ\)[/tex].
5. Coterminal Angle:
[tex]\[ \boxed{210^\circ} \][/tex]
So, the final answers are:
- (a) [tex]\(\frac{13\pi}{10}\)[/tex]
- (b) [tex]\(210^\circ\)[/tex]
### (a) Find an angle between [tex]\(0\)[/tex] and [tex]\(2\pi\)[/tex] that is coterminal with [tex]\(\frac{33\pi}{10}\)[/tex].
1. Understanding Coterminal Angles:
An angle is coterminal with another if they share the same terminal side when drawn in standard position. Coterminal angles can be found by adding or subtracting full rotations ( [tex]\(2\pi \)[/tex] radians) from the given angle.
2. Given Angle:
[tex]\[\frac{33\pi}{10}\][/tex]
3. Convert the Given Angle:
Let's reduce [tex]\(\frac{33\pi}{10}\)[/tex] to an angle within the range [tex]\(0\)[/tex] to [tex]\(2\pi\)[/tex].
[tex]\[ \frac{33\pi}{10} \quad \text{is more than } 2\pi \; (\approx 6.2832) \][/tex]
4. Subtract a Full Rotation:
[tex]\[ \frac{33\pi}{10} - 2\pi \times k \quad \text{where } k \text{ is an integer} \][/tex]
Since [tex]\(\frac{33\pi}{10}\)[/tex] is less than [tex]\(4\pi \)[/tex], we need to subtract only one [tex]\(2\pi\)[/tex] rotation:
[tex]\[ \frac{33\pi}{10} - 2\pi = \frac{33\pi}{10} - \frac{20\pi}{10} = \frac{13\pi}{10} \][/tex]
Here, [tex]\(\frac{13\pi}{10}\)[/tex] is already within the range [tex]\(0\)[/tex] to [tex]\(2\pi\)[/tex].
5. Coterminal Angle:
[tex]\[ \boxed{\frac{13\pi}{10}} \][/tex]
### (b) Find an angle between [tex]\(0^{\circ}\)[/tex] and [tex]\(360^{\circ}\)[/tex] that is coterminal with [tex]\(930^{\circ}\)[/tex].
1. Understanding Coterminal Angles:
Similarly, for degrees, an angle is coterminal if it is the same as the given angle plus or minus multiples of [tex]\(360^\circ\)[/tex] (a full rotation).
2. Given Angle:
[tex]\(930^\circ\)[/tex]
3. Convert the Given Angle:
Let's reduce [tex]\(930^\circ\)[/tex] to an angle within the range [tex]\(0^\circ\)[/tex] to [tex]\(360^\circ\)[/tex].
4. Subtract Full Rotations:
[tex]\[ 930^\circ \mod 360^\circ \][/tex]
This means we subtract multiples of [tex]\(360^\circ\)[/tex] until the result is within [tex]\(0^\circ\)[/tex] to [tex]\(360^\circ\)[/tex].
[tex]\[ 930^\circ - 2 \times 360^\circ = 930^\circ - 720^\circ = 210^\circ \][/tex]
Here [tex]\(210^\circ\)[/tex] is already within the range [tex]\(0^\circ\)[/tex] to [tex]\(360^\circ\)[/tex].
5. Coterminal Angle:
[tex]\[ \boxed{210^\circ} \][/tex]
So, the final answers are:
- (a) [tex]\(\frac{13\pi}{10}\)[/tex]
- (b) [tex]\(210^\circ\)[/tex]
We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. We're dedicated to helping you find the answers you need at Westonci.ca. Don't hesitate to return for more.