Welcome to Westonci.ca, where finding answers to your questions is made simple by our community of experts. Ask your questions and receive precise answers from experienced professionals across different disciplines. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform.
Sagot :
To find the equation of the line that passes through the points [tex]\((-12, 11)\)[/tex] and [tex]\((14, -15)\)[/tex] in slope-intercept form [tex]\(y = mx + b\)[/tex], follow these steps:
1. Determine the slope (m):
The slope [tex]\(m\)[/tex] of a line through two points [tex]\((x_1, y_1)\)[/tex] and [tex]\((x_2, y_2)\)[/tex] is given by the formula:
[tex]\[ m = \frac{y_2 - y_1}{x_2 - x_1} \][/tex]
Plugging in the coordinates of our points [tex]\((-12, 11)\)[/tex] and [tex]\((14, -15)\)[/tex]:
[tex]\[ m = \frac{-15 - 11}{14 - (-12)} = \frac{-15 - 11}{14 + 12} = \frac{-26}{26} = -1 \][/tex]
2. Find the y-intercept (b):
To find the y-intercept [tex]\(b\)[/tex], use the slope-intercept formula [tex]\(y = mx + b\)[/tex] with one of the points. Let's use [tex]\((-12, 11)\)[/tex]:
[tex]\[ 11 = -1 \cdot (-12) + b \][/tex]
[tex]\[ 11 = 12 + b \][/tex]
Solving for [tex]\(b\)[/tex]:
[tex]\[ b = 11 - 12 = -1 \][/tex]
So, the slope [tex]\(m\)[/tex] is [tex]\(-1\)[/tex], and the y-intercept [tex]\(b\)[/tex] is [tex]\(-1\)[/tex].
3. Write the equation:
Substitute the values of [tex]\(m\)[/tex] and [tex]\(b\)[/tex] into the slope-intercept form [tex]\(y = mx + b\)[/tex]:
[tex]\[ y = -1x - 1 \][/tex]
Therefore, the equation of the line in slope-intercept form is:
[tex]\[ y = -x - 1 \][/tex]
1. Determine the slope (m):
The slope [tex]\(m\)[/tex] of a line through two points [tex]\((x_1, y_1)\)[/tex] and [tex]\((x_2, y_2)\)[/tex] is given by the formula:
[tex]\[ m = \frac{y_2 - y_1}{x_2 - x_1} \][/tex]
Plugging in the coordinates of our points [tex]\((-12, 11)\)[/tex] and [tex]\((14, -15)\)[/tex]:
[tex]\[ m = \frac{-15 - 11}{14 - (-12)} = \frac{-15 - 11}{14 + 12} = \frac{-26}{26} = -1 \][/tex]
2. Find the y-intercept (b):
To find the y-intercept [tex]\(b\)[/tex], use the slope-intercept formula [tex]\(y = mx + b\)[/tex] with one of the points. Let's use [tex]\((-12, 11)\)[/tex]:
[tex]\[ 11 = -1 \cdot (-12) + b \][/tex]
[tex]\[ 11 = 12 + b \][/tex]
Solving for [tex]\(b\)[/tex]:
[tex]\[ b = 11 - 12 = -1 \][/tex]
So, the slope [tex]\(m\)[/tex] is [tex]\(-1\)[/tex], and the y-intercept [tex]\(b\)[/tex] is [tex]\(-1\)[/tex].
3. Write the equation:
Substitute the values of [tex]\(m\)[/tex] and [tex]\(b\)[/tex] into the slope-intercept form [tex]\(y = mx + b\)[/tex]:
[tex]\[ y = -1x - 1 \][/tex]
Therefore, the equation of the line in slope-intercept form is:
[tex]\[ y = -x - 1 \][/tex]
Thank you for visiting our platform. We hope you found the answers you were looking for. Come back anytime you need more information. Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. Get the answers you need at Westonci.ca. Stay informed with our latest expert advice.