Get reliable answers to your questions at Westonci.ca, where our knowledgeable community is always ready to help. Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts.

Use the information given about the angle [tex]\theta[/tex]:

[tex]\[
\cos \theta = -\frac{\sqrt{3}}{2}, \quad \frac{\pi}{2} \ \textless \ \theta \ \textless \ \pi
\][/tex]

to find the exact values of the following:

(a) [tex]\sin (2 \theta)[/tex]
(b) [tex]\cos (2 \theta)[/tex]
(c) [tex]\sin \frac{\theta}{2}[/tex]
(d) [tex]\cos \frac{\theta}{2}[/tex]

Sagot :

Certainly! Let's solve the given problem step-by-step.

Given:
[tex]\[ \cos(\theta) = -\frac{\sqrt{3}}{4} \quad \text{and} \quad \frac{\pi}{2} < \theta < \pi \][/tex]

### Part (a): Finding [tex]\(\sin(2\theta)\)[/tex]
The double-angle identity for sine is:
[tex]\[ \sin(2\theta) = 2 \sin(\theta) \cos(\theta) \][/tex]
First, we need to find [tex]\(\sin(\theta)\)[/tex]. Using the Pythagorean identity:
[tex]\[ \sin^2(\theta) + \cos^2(\theta) = 1 \][/tex]
Substitute [tex]\(\cos(\theta)\)[/tex] into the equation:
[tex]\[ \sin^2(\theta) + \left(-\frac{\sqrt{3}}{4}\right)^2 = 1 \][/tex]
[tex]\[ \sin^2(\theta) + \frac{3}{16} = 1 \][/tex]
[tex]\[ \sin^2(\theta) = 1 - \frac{3}{16} \][/tex]
[tex]\[ \sin^2(\theta) = \frac{16}{16} - \frac{3}{16} \][/tex]
[tex]\[ \sin^2(\theta) = \frac{13}{16} \][/tex]
Since [tex]\(\frac{\pi}{2} < \theta < \pi\)[/tex], [tex]\(\sin(\theta)\)[/tex] is positive:
[tex]\[ \sin(\theta) = \sqrt{\frac{13}{16}} = \frac{\sqrt{13}}{4} \][/tex]

Now, using the double-angle identity:
[tex]\[ \sin(2\theta) = 2 \sin(\theta) \cos(\theta) = 2 \left(\frac{\sqrt{13}}{4}\right) \left(-\frac{\sqrt{3}}{4}\right) \][/tex]
[tex]\[ \sin(2\theta) = 2 \left( -\frac{\sqrt{39}}{16} \right) = -\frac{\sqrt{39}}{8} \][/tex]

Thus, the exact value is approximately:
[tex]\[ \sin(2\theta) \approx -0.7806 \][/tex]

### Part (b): Finding [tex]\(\cos(2\theta)\)[/tex]
The double-angle identity for cosine is:
[tex]\[ \cos(2\theta) = 2 \cos^2(\theta) - 1 \][/tex]

Substitute [tex]\(\cos(\theta)\)[/tex]:
[tex]\[ \cos(2\theta) = 2 \left(-\frac{\sqrt{3}}{4}\right)^2 - 1 \][/tex]
[tex]\[ \cos(2\theta) = 2 \left(\frac{3}{16}\right) - 1 \][/tex]
[tex]\[ \cos(2\theta) = \frac{6}{16} - 1 \][/tex]
[tex]\[ \cos(2\theta) = \frac{6}{16} - \frac{16}{16} \][/tex]
[tex]\[ \cos(2\theta) = \frac{6 - 16}{16} \][/tex]
[tex]\[ \cos(2\theta) = \frac{-10}{16} \][/tex]
[tex]\[ \cos(2\theta) = -\frac{5}{8} \][/tex]

Thus, the exact value is:
[tex]\[ \cos(2\theta) = -0.625 \][/tex]

### Part (c): Finding [tex]\(\sin\left(\frac{\theta}{2}\right)\)[/tex]
The half-angle identity for sine is:
[tex]\[ \sin\left(\frac{\theta}{2}\right) = \sqrt{\frac{1 - \cos(\theta)}{2}} \][/tex]

Substitute [tex]\(\cos(\theta)\)[/tex]:
[tex]\[ \sin\left(\frac{\theta}{2}\right) = \sqrt{\frac{1 - \left(-\frac{\sqrt{3}}{4}\right)}{2}} \][/tex]
[tex]\[ \sin\left(\frac{\theta}{2}\right) = \sqrt{\frac{1 + \frac{\sqrt{3}}{4}}{2}} \][/tex]
[tex]\[ \sin\left(\frac{\theta}{2}\right) = \sqrt{\frac{\frac{4}{4} + \frac{\sqrt{3}}{4}}{2}} \][/tex]
[tex]\[ \sin\left(\frac{\theta}{2}\right) = \sqrt{\frac{\frac{4+\sqrt{3}}{4}}{2}} \][/tex]
[tex]\[ \sin\left(\frac{\theta}{2}\right) = \sqrt{\frac{4+\sqrt{3}}{8}} \][/tex]
[tex]\[ \sin\left(\frac{\theta}{2}\right) = \sqrt{\frac{4+\sqrt{3}}{8}} \][/tex]
Since [tex]\(\theta/2\)[/tex] is in the first quadrant, [tex]\(\sin(\theta/2)\)[/tex] is positive.

Thus, approximately:
[tex]\[ \sin\left(\frac{\theta}{2}\right) \approx 0.8465 \][/tex]

### Part (d): Finding [tex]\(\cos\left(\frac{\theta}{2}\right)\)[/tex]
The half-angle identity for cosine is:
[tex]\[ \cos\left(\frac{\theta}{2}\right) = \sqrt{\frac{1 + \cos(\theta)}{2}} \][/tex]

Substitute [tex]\(\cos(\theta)\)[/tex]:
[tex]\[ \cos\left(\frac{\theta}{2}\right) = \sqrt{\frac{1 + \left(-\frac{\sqrt{3}}{4}\right)}{2}} \][/tex]
[tex]\[ \cos\left(\frac{\theta}{2}\right) = \sqrt{\frac{1 - \frac{\sqrt{3}}{4}}{2}} \][/tex]
[tex]\[ \cos\left(\frac{\theta}{2}\right) = \sqrt{\frac{\frac{4}{4} - \frac{\sqrt{3}}{4}}{2}} \][/tex]
[tex]\[ \cos\left(\frac{\theta}{2}\right) = \sqrt{\frac{\frac{4-\sqrt{3}}{4}}{2}} \][/tex]
[tex]\[ \cos\left(\frac{\theta}{2}\right) = \sqrt{\frac{4-\sqrt{3}}{8}} \][/tex]
\]
\cos\left(\frac{\theta}{2}\right) = \sqrt{\frac{4-\sqrt{3}}{8}}
\]
Since [tex]\(\theta/2\)[/tex] is in the first quadrant, [tex]\(\cos(\theta/2)\)[/tex] is positive.

Thus, approximately:
[tex]\[ \cos\left(\frac{\theta}{2}\right) \approx 0.5324 \][/tex]

In summary:
[tex]\[ (a) \sin(2\theta) \approx -0.7806 \][/tex]
[tex]\[ (b) \cos(2\theta) = -0.625 \][/tex]
\]
(c) \sin\left(\frac{\theta}{2}\right) \approx 0.8465
\]
[tex]\[ (d) \cos\left(\frac{\theta}{2}\right) \approx 0.5324 \][/tex]
Thanks for stopping by. We are committed to providing the best answers for all your questions. See you again soon. Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. Discover more at Westonci.ca. Return for the latest expert answers and updates on various topics.