Discover the answers you need at Westonci.ca, a dynamic Q&A platform where knowledge is shared freely by a community of experts. Ask your questions and receive accurate answers from professionals with extensive experience in various fields on our platform. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts.

Use the information given about the angle [tex]\theta[/tex]:

[tex]\[
\cos \theta = -\frac{\sqrt{3}}{2}, \quad \frac{\pi}{2} \ \textless \ \theta \ \textless \ \pi
\][/tex]

to find the exact values of the following:

(a) [tex]\sin (2 \theta)[/tex]
(b) [tex]\cos (2 \theta)[/tex]
(c) [tex]\sin \frac{\theta}{2}[/tex]
(d) [tex]\cos \frac{\theta}{2}[/tex]

Sagot :

Certainly! Let's solve the given problem step-by-step.

Given:
[tex]\[ \cos(\theta) = -\frac{\sqrt{3}}{4} \quad \text{and} \quad \frac{\pi}{2} < \theta < \pi \][/tex]

### Part (a): Finding [tex]\(\sin(2\theta)\)[/tex]
The double-angle identity for sine is:
[tex]\[ \sin(2\theta) = 2 \sin(\theta) \cos(\theta) \][/tex]
First, we need to find [tex]\(\sin(\theta)\)[/tex]. Using the Pythagorean identity:
[tex]\[ \sin^2(\theta) + \cos^2(\theta) = 1 \][/tex]
Substitute [tex]\(\cos(\theta)\)[/tex] into the equation:
[tex]\[ \sin^2(\theta) + \left(-\frac{\sqrt{3}}{4}\right)^2 = 1 \][/tex]
[tex]\[ \sin^2(\theta) + \frac{3}{16} = 1 \][/tex]
[tex]\[ \sin^2(\theta) = 1 - \frac{3}{16} \][/tex]
[tex]\[ \sin^2(\theta) = \frac{16}{16} - \frac{3}{16} \][/tex]
[tex]\[ \sin^2(\theta) = \frac{13}{16} \][/tex]
Since [tex]\(\frac{\pi}{2} < \theta < \pi\)[/tex], [tex]\(\sin(\theta)\)[/tex] is positive:
[tex]\[ \sin(\theta) = \sqrt{\frac{13}{16}} = \frac{\sqrt{13}}{4} \][/tex]

Now, using the double-angle identity:
[tex]\[ \sin(2\theta) = 2 \sin(\theta) \cos(\theta) = 2 \left(\frac{\sqrt{13}}{4}\right) \left(-\frac{\sqrt{3}}{4}\right) \][/tex]
[tex]\[ \sin(2\theta) = 2 \left( -\frac{\sqrt{39}}{16} \right) = -\frac{\sqrt{39}}{8} \][/tex]

Thus, the exact value is approximately:
[tex]\[ \sin(2\theta) \approx -0.7806 \][/tex]

### Part (b): Finding [tex]\(\cos(2\theta)\)[/tex]
The double-angle identity for cosine is:
[tex]\[ \cos(2\theta) = 2 \cos^2(\theta) - 1 \][/tex]

Substitute [tex]\(\cos(\theta)\)[/tex]:
[tex]\[ \cos(2\theta) = 2 \left(-\frac{\sqrt{3}}{4}\right)^2 - 1 \][/tex]
[tex]\[ \cos(2\theta) = 2 \left(\frac{3}{16}\right) - 1 \][/tex]
[tex]\[ \cos(2\theta) = \frac{6}{16} - 1 \][/tex]
[tex]\[ \cos(2\theta) = \frac{6}{16} - \frac{16}{16} \][/tex]
[tex]\[ \cos(2\theta) = \frac{6 - 16}{16} \][/tex]
[tex]\[ \cos(2\theta) = \frac{-10}{16} \][/tex]
[tex]\[ \cos(2\theta) = -\frac{5}{8} \][/tex]

Thus, the exact value is:
[tex]\[ \cos(2\theta) = -0.625 \][/tex]

### Part (c): Finding [tex]\(\sin\left(\frac{\theta}{2}\right)\)[/tex]
The half-angle identity for sine is:
[tex]\[ \sin\left(\frac{\theta}{2}\right) = \sqrt{\frac{1 - \cos(\theta)}{2}} \][/tex]

Substitute [tex]\(\cos(\theta)\)[/tex]:
[tex]\[ \sin\left(\frac{\theta}{2}\right) = \sqrt{\frac{1 - \left(-\frac{\sqrt{3}}{4}\right)}{2}} \][/tex]
[tex]\[ \sin\left(\frac{\theta}{2}\right) = \sqrt{\frac{1 + \frac{\sqrt{3}}{4}}{2}} \][/tex]
[tex]\[ \sin\left(\frac{\theta}{2}\right) = \sqrt{\frac{\frac{4}{4} + \frac{\sqrt{3}}{4}}{2}} \][/tex]
[tex]\[ \sin\left(\frac{\theta}{2}\right) = \sqrt{\frac{\frac{4+\sqrt{3}}{4}}{2}} \][/tex]
[tex]\[ \sin\left(\frac{\theta}{2}\right) = \sqrt{\frac{4+\sqrt{3}}{8}} \][/tex]
[tex]\[ \sin\left(\frac{\theta}{2}\right) = \sqrt{\frac{4+\sqrt{3}}{8}} \][/tex]
Since [tex]\(\theta/2\)[/tex] is in the first quadrant, [tex]\(\sin(\theta/2)\)[/tex] is positive.

Thus, approximately:
[tex]\[ \sin\left(\frac{\theta}{2}\right) \approx 0.8465 \][/tex]

### Part (d): Finding [tex]\(\cos\left(\frac{\theta}{2}\right)\)[/tex]
The half-angle identity for cosine is:
[tex]\[ \cos\left(\frac{\theta}{2}\right) = \sqrt{\frac{1 + \cos(\theta)}{2}} \][/tex]

Substitute [tex]\(\cos(\theta)\)[/tex]:
[tex]\[ \cos\left(\frac{\theta}{2}\right) = \sqrt{\frac{1 + \left(-\frac{\sqrt{3}}{4}\right)}{2}} \][/tex]
[tex]\[ \cos\left(\frac{\theta}{2}\right) = \sqrt{\frac{1 - \frac{\sqrt{3}}{4}}{2}} \][/tex]
[tex]\[ \cos\left(\frac{\theta}{2}\right) = \sqrt{\frac{\frac{4}{4} - \frac{\sqrt{3}}{4}}{2}} \][/tex]
[tex]\[ \cos\left(\frac{\theta}{2}\right) = \sqrt{\frac{\frac{4-\sqrt{3}}{4}}{2}} \][/tex]
[tex]\[ \cos\left(\frac{\theta}{2}\right) = \sqrt{\frac{4-\sqrt{3}}{8}} \][/tex]
\]
\cos\left(\frac{\theta}{2}\right) = \sqrt{\frac{4-\sqrt{3}}{8}}
\]
Since [tex]\(\theta/2\)[/tex] is in the first quadrant, [tex]\(\cos(\theta/2)\)[/tex] is positive.

Thus, approximately:
[tex]\[ \cos\left(\frac{\theta}{2}\right) \approx 0.5324 \][/tex]

In summary:
[tex]\[ (a) \sin(2\theta) \approx -0.7806 \][/tex]
[tex]\[ (b) \cos(2\theta) = -0.625 \][/tex]
\]
(c) \sin\left(\frac{\theta}{2}\right) \approx 0.8465
\]
[tex]\[ (d) \cos\left(\frac{\theta}{2}\right) \approx 0.5324 \][/tex]