Welcome to Westonci.ca, the place where your questions find answers from a community of knowledgeable experts. Get expert answers to your questions quickly and accurately from our dedicated community of professionals. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently.
Sagot :
To determine whether the polar form of a complex number is unique when its argument is restricted to the range [tex]\([0, 2\pi)\)[/tex], let's understand what the polar form of a complex number is and the role of the argument.
1. Complex Number in Polar Form:
A complex number [tex]\( z \)[/tex] can be represented in polar form as:
[tex]\[ z = r e^{i\theta} \][/tex]
where:
- [tex]\( r \)[/tex] is the magnitude (or modulus) of the complex number.
- [tex]\( \theta \)[/tex] is the argument (or angle) of the complex number.
2. Argument Restrictions:
The argument [tex]\( \theta \)[/tex] of a complex number can take any real value. However, in order to have a unique representation, we often restrict [tex]\( \theta \)[/tex] to a principal value range. A common choice is [tex]\( [0, 2\pi) \)[/tex].
3. Uniqueness in Polar Form:
When the argument [tex]\( \theta \)[/tex] is restricted to the range [tex]\( [0, 2\pi) \)[/tex]:
- Each unique complex number corresponds to a unique pair [tex]\((r, \theta)\)[/tex].
- No two different values of [tex]\( \theta \)[/tex] within this range can represent the same complex direction, ensuring that each complex number's polar form is unique within this range.
Thus, given the restriction [tex]\( \theta \in [0, 2\pi) \)[/tex], the polar form of a complex number is indeed unique.
Therefore, the statement "As long as its argument is restricted to [tex]\([0,2\pi)\)[/tex], the polar form of a complex number is unique" is:
True.
1. Complex Number in Polar Form:
A complex number [tex]\( z \)[/tex] can be represented in polar form as:
[tex]\[ z = r e^{i\theta} \][/tex]
where:
- [tex]\( r \)[/tex] is the magnitude (or modulus) of the complex number.
- [tex]\( \theta \)[/tex] is the argument (or angle) of the complex number.
2. Argument Restrictions:
The argument [tex]\( \theta \)[/tex] of a complex number can take any real value. However, in order to have a unique representation, we often restrict [tex]\( \theta \)[/tex] to a principal value range. A common choice is [tex]\( [0, 2\pi) \)[/tex].
3. Uniqueness in Polar Form:
When the argument [tex]\( \theta \)[/tex] is restricted to the range [tex]\( [0, 2\pi) \)[/tex]:
- Each unique complex number corresponds to a unique pair [tex]\((r, \theta)\)[/tex].
- No two different values of [tex]\( \theta \)[/tex] within this range can represent the same complex direction, ensuring that each complex number's polar form is unique within this range.
Thus, given the restriction [tex]\( \theta \in [0, 2\pi) \)[/tex], the polar form of a complex number is indeed unique.
Therefore, the statement "As long as its argument is restricted to [tex]\([0,2\pi)\)[/tex], the polar form of a complex number is unique" is:
True.
Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Your questions are important to us at Westonci.ca. Visit again for expert answers and reliable information.