Discover a wealth of knowledge at Westonci.ca, where experts provide answers to your most pressing questions. Get detailed and precise answers to your questions from a dedicated community of experts on our Q&A platform. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately.
Sagot :
To determine whether the polar form of a complex number is unique when its argument is restricted to the range [tex]\([0, 2\pi)\)[/tex], let's understand what the polar form of a complex number is and the role of the argument.
1. Complex Number in Polar Form:
A complex number [tex]\( z \)[/tex] can be represented in polar form as:
[tex]\[ z = r e^{i\theta} \][/tex]
where:
- [tex]\( r \)[/tex] is the magnitude (or modulus) of the complex number.
- [tex]\( \theta \)[/tex] is the argument (or angle) of the complex number.
2. Argument Restrictions:
The argument [tex]\( \theta \)[/tex] of a complex number can take any real value. However, in order to have a unique representation, we often restrict [tex]\( \theta \)[/tex] to a principal value range. A common choice is [tex]\( [0, 2\pi) \)[/tex].
3. Uniqueness in Polar Form:
When the argument [tex]\( \theta \)[/tex] is restricted to the range [tex]\( [0, 2\pi) \)[/tex]:
- Each unique complex number corresponds to a unique pair [tex]\((r, \theta)\)[/tex].
- No two different values of [tex]\( \theta \)[/tex] within this range can represent the same complex direction, ensuring that each complex number's polar form is unique within this range.
Thus, given the restriction [tex]\( \theta \in [0, 2\pi) \)[/tex], the polar form of a complex number is indeed unique.
Therefore, the statement "As long as its argument is restricted to [tex]\([0,2\pi)\)[/tex], the polar form of a complex number is unique" is:
True.
1. Complex Number in Polar Form:
A complex number [tex]\( z \)[/tex] can be represented in polar form as:
[tex]\[ z = r e^{i\theta} \][/tex]
where:
- [tex]\( r \)[/tex] is the magnitude (or modulus) of the complex number.
- [tex]\( \theta \)[/tex] is the argument (or angle) of the complex number.
2. Argument Restrictions:
The argument [tex]\( \theta \)[/tex] of a complex number can take any real value. However, in order to have a unique representation, we often restrict [tex]\( \theta \)[/tex] to a principal value range. A common choice is [tex]\( [0, 2\pi) \)[/tex].
3. Uniqueness in Polar Form:
When the argument [tex]\( \theta \)[/tex] is restricted to the range [tex]\( [0, 2\pi) \)[/tex]:
- Each unique complex number corresponds to a unique pair [tex]\((r, \theta)\)[/tex].
- No two different values of [tex]\( \theta \)[/tex] within this range can represent the same complex direction, ensuring that each complex number's polar form is unique within this range.
Thus, given the restriction [tex]\( \theta \in [0, 2\pi) \)[/tex], the polar form of a complex number is indeed unique.
Therefore, the statement "As long as its argument is restricted to [tex]\([0,2\pi)\)[/tex], the polar form of a complex number is unique" is:
True.
Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. Your questions are important to us at Westonci.ca. Visit again for expert answers and reliable information.