Welcome to Westonci.ca, the place where your questions find answers from a community of knowledgeable experts. Discover detailed solutions to your questions from a wide network of experts on our comprehensive Q&A platform. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently.
Sagot :
Let's determine the correct expression for the volume of a solid right pyramid that has a square base with an edge length of [tex]\(x\)[/tex] cm and a height of [tex]\(y\)[/tex] cm.
1. Identify the base area of the pyramid:
- The base of the pyramid is square, so to find the area of the square base, we use the formula for the area of a square, which is:
[tex]\[ \text{Area of the base} = x^2 \text{ cm}^2 \][/tex]
2. Recall the formula for the volume of a pyramid:
- The volume [tex]\(V\)[/tex] of a pyramid is given by:
[tex]\[ V = \frac{1}{3} \times \text{Base Area} \times \text{Height} \][/tex]
3. Substitute the values in the formula:
- We already know that the base area is [tex]\(x^2\)[/tex] and the height is [tex]\(y\)[/tex]. Substituting these into the volume formula, we get:
[tex]\[ V = \frac{1}{3} \times x^2 \times y \][/tex]
4. Simplify and express the volume:
- Simplifying this, the volume of the pyramid becomes:
[tex]\[ V = \frac{1}{3} x^2 y \text{ cm}^3 \][/tex]
Therefore, the correct expression that represents the volume of the pyramid is:
[tex]\[ \frac{1}{3} x^2 y \text{ cm}^3 \][/tex]
The correct choice is:
[tex]\[ \boxed{\frac{1}{3} x^2 y \text{ cm}^3} \][/tex]
1. Identify the base area of the pyramid:
- The base of the pyramid is square, so to find the area of the square base, we use the formula for the area of a square, which is:
[tex]\[ \text{Area of the base} = x^2 \text{ cm}^2 \][/tex]
2. Recall the formula for the volume of a pyramid:
- The volume [tex]\(V\)[/tex] of a pyramid is given by:
[tex]\[ V = \frac{1}{3} \times \text{Base Area} \times \text{Height} \][/tex]
3. Substitute the values in the formula:
- We already know that the base area is [tex]\(x^2\)[/tex] and the height is [tex]\(y\)[/tex]. Substituting these into the volume formula, we get:
[tex]\[ V = \frac{1}{3} \times x^2 \times y \][/tex]
4. Simplify and express the volume:
- Simplifying this, the volume of the pyramid becomes:
[tex]\[ V = \frac{1}{3} x^2 y \text{ cm}^3 \][/tex]
Therefore, the correct expression that represents the volume of the pyramid is:
[tex]\[ \frac{1}{3} x^2 y \text{ cm}^3 \][/tex]
The correct choice is:
[tex]\[ \boxed{\frac{1}{3} x^2 y \text{ cm}^3} \][/tex]
We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. We appreciate your time. Please come back anytime for the latest information and answers to your questions. Thank you for visiting Westonci.ca, your go-to source for reliable answers. Come back soon for more expert insights.