Get the answers you need at Westonci.ca, where our expert community is always ready to help with accurate information. Get expert answers to your questions quickly and accurately from our dedicated community of professionals. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform.

What is the energy of a photon of infrared radiation with a frequency of [tex]2.53 \times 10^{12} \text{Hz}[/tex]? Planck's constant is [tex]6.63 \times 10^{-34} \text{J} \cdot \text{s}[/tex].

A. [tex]1.68 \times 10^{23} \text{J}[/tex]
B. [tex]1.68 \times 10^{47} \text{J}[/tex]
C. [tex]1.68 \times 10^{-21} \text{J}[/tex]
D. [tex]1.68 \times 10^{-45} \text{J}[/tex]


Sagot :

To find the energy of a photon given its frequency, we can use the well-known formula from quantum mechanics:

[tex]\[ E = h \cdot f \][/tex]

where:
- [tex]\( E \)[/tex] is the energy of the photon,
- [tex]\( h \)[/tex] is Planck's constant ([tex]\( 6.63 \times 10^{-34} \)[/tex] J·s), and
- [tex]\( f \)[/tex] is the frequency of the photon ([tex]\( 2.53 \times 10^{12} \)[/tex] Hz).

Let's go through the steps to calculate the energy:

1. Identify the given values:
- Frequency ([tex]\( f \)[/tex]): [tex]\( 2.53 \times 10^{12} \)[/tex] Hz
- Planck's constant ([tex]\( h \)[/tex]): [tex]\( 6.63 \times 10^{-34} \)[/tex] J·s

2. Substitute the values into the formula:
[tex]\[ E = (6.63 \times 10^{-34} \text{ J·s}) \times (2.53 \times 10^{12} \text{ Hz}) \][/tex]

3. Multiply the numbers and the exponents:
[tex]\[ E = 6.63 \times 2.53 \times 10^{-34 + 12} \text{ J} \][/tex]

4. Calculate the product of the coefficients:
[tex]\[ 6.63 \times 2.53 = 16.7679 \][/tex]

5. Combine the exponents:
[tex]\[ 10^{-34 + 12} = 10^{-22} \][/tex]

6. Put it all together:
[tex]\[ E = 16.7679 \times 10^{-22} \text{ J} \][/tex]

7. Adjust the number to proper scientific notation:
[tex]\[ E \approx 1.67739 \times 10^{-21} \text{ J} \][/tex]

Now that we have calculated the energy to be roughly [tex]\( 1.67739 \times 10^{-21} \)[/tex] J, we need to compare this result with the given choices to find the closest match.

Here are the choices provided:
- [tex]\( 1.68 \times 10^{23} \)[/tex] J
- [tex]\( 1.68 \times 10^{47} \)[/tex] J
- [tex]\( 1.68 \times 10^{-21} \)[/tex] J
- [tex]\( 1.68 \times 10^{-45} \)[/tex] J

The closest and most accurate match is [tex]\( 1.68 \times 10^{-21} \)[/tex] J. Thus, the correct answer is:
[tex]\[ \boxed{1.68 \times 10^{-21} \text{ J}}. \][/tex]