Westonci.ca is the premier destination for reliable answers to your questions, provided by a community of experts. Get quick and reliable answers to your questions from a dedicated community of professionals on our platform. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform.
Sagot :
To determine how many moles of water could be formed from 3.50 moles of oxygen using the given chemical equation:
[tex]\[ \mathrm{C_5H_{12} + 8 \, O_2 \rightarrow 5 \, CO_2 + 6 \, H_2O} \][/tex]
we need to use the stoichiometric relationships from the balanced equation. The balanced equation states that 8 moles of [tex]\( \mathrm{O_2} \)[/tex] produce 6 moles of [tex]\( \mathrm{H_2O} \)[/tex].
Let's convert the given amount of [tex]\( \mathrm{O_2} \)[/tex] to moles of [tex]\( \mathrm{H_2O} \)[/tex]:
Given moles of [tex]\( \mathrm{O_2} \)[/tex] = 3.50 moles
Using the ratio from the balanced equation:
[tex]\[ \text{Moles of } \mathrm{H_2O} = \text{Moles of } \mathrm{O_2} \times \frac{6 \text{ moles } \mathrm{H_2O}}{8 \text{ moles } \mathrm{O_2}} \][/tex]
So,
[tex]\[ 3.50 \text{ moles } \mathrm{O_2} \times \frac{6 \text{ moles } \mathrm{H_2O}}{8 \text{ moles } \mathrm{O_2}} \][/tex]
Upon calculating this, we find:
[tex]\[ 3.50 \text{ moles } \mathrm{O_2} \times 0.75 = 2.625 \text{ moles } \mathrm{H_2O} \][/tex]
Thus, 3.50 moles of [tex]\( \mathrm{O_2} \)[/tex] would produce 2.625 moles of [tex]\( \mathrm{H_2O} \)[/tex].
Based on this calculation, the correct conversion from the given options is:
[tex]\[ 3.50 \text{ moles } O_2 \times \frac{6 \text{ moles } H_2O }{8 \text{ moles } O_2} \][/tex]
This step-by-step solution shows that the second option matches the proper conversion to determine how many moles of water would be formed.
[tex]\[ \mathrm{C_5H_{12} + 8 \, O_2 \rightarrow 5 \, CO_2 + 6 \, H_2O} \][/tex]
we need to use the stoichiometric relationships from the balanced equation. The balanced equation states that 8 moles of [tex]\( \mathrm{O_2} \)[/tex] produce 6 moles of [tex]\( \mathrm{H_2O} \)[/tex].
Let's convert the given amount of [tex]\( \mathrm{O_2} \)[/tex] to moles of [tex]\( \mathrm{H_2O} \)[/tex]:
Given moles of [tex]\( \mathrm{O_2} \)[/tex] = 3.50 moles
Using the ratio from the balanced equation:
[tex]\[ \text{Moles of } \mathrm{H_2O} = \text{Moles of } \mathrm{O_2} \times \frac{6 \text{ moles } \mathrm{H_2O}}{8 \text{ moles } \mathrm{O_2}} \][/tex]
So,
[tex]\[ 3.50 \text{ moles } \mathrm{O_2} \times \frac{6 \text{ moles } \mathrm{H_2O}}{8 \text{ moles } \mathrm{O_2}} \][/tex]
Upon calculating this, we find:
[tex]\[ 3.50 \text{ moles } \mathrm{O_2} \times 0.75 = 2.625 \text{ moles } \mathrm{H_2O} \][/tex]
Thus, 3.50 moles of [tex]\( \mathrm{O_2} \)[/tex] would produce 2.625 moles of [tex]\( \mathrm{H_2O} \)[/tex].
Based on this calculation, the correct conversion from the given options is:
[tex]\[ 3.50 \text{ moles } O_2 \times \frac{6 \text{ moles } H_2O }{8 \text{ moles } O_2} \][/tex]
This step-by-step solution shows that the second option matches the proper conversion to determine how many moles of water would be formed.
We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. We hope this was helpful. Please come back whenever you need more information or answers to your queries. Keep exploring Westonci.ca for more insightful answers to your questions. We're here to help.