Explore Westonci.ca, the leading Q&A site where experts provide accurate and helpful answers to all your questions. Connect with professionals on our platform to receive accurate answers to your questions quickly and efficiently. Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals.
Sagot :
Let's tackle the task step-by-step based on the initial steps you provided for Hill 1 and Hill 2.
### Hill 1:
You want a polynomial with three peaks, and you have chosen three points on the [tex]\( x \)[/tex]-axis (the zeros), which are [tex]\( x = 1 \)[/tex], [tex]\( x = 3 \)[/tex], and [tex]\( x = 4 \)[/tex]. Representing each zero as a factor, you built the polynomial:
[tex]\[ F(x) = (x - 1)(x - 3)(x - 4) \][/tex]
Now, let's expand this polynomial:
1. First, expand [tex]\( (x - 1)(x - 3) \)[/tex]:
[tex]\[ (x - 1)(x - 3) = x^2 - 3x - x + 3 = x^2 - 4x + 3 \][/tex]
2. Next, expand this result with [tex]\( (x - 4) \)[/tex]:
[tex]\[(x^2 - 4x + 3)(x - 4)\][/tex]
Distribute each term in [tex]\( x^2 - 4x + 3 \)[/tex] by [tex]\( x - 4 \)[/tex]:
- [tex]\( x^2(x - 4) = x^3 - 4x^2 \)[/tex]
- [tex]\( -4x(x - 4) = -4x^2 + 16x \)[/tex]
- [tex]\( 3(x - 4) = 3x - 12 \)[/tex]
Combine these results:
[tex]\[ x^3 - 4x^2 - 4x^2 + 16x + 3x - 12 = x^3 - 8x^2 + 19x - 12 \][/tex]
### Hill 2:
Your second layer should be a transformation of the first polynomial, [tex]\( F(x) \)[/tex]. You indicated that this transformation involves multiplying the polynomial by [tex]\(-12\)[/tex] or by some combination involving [tex]\(-12\)[/tex].
We can suppose you meant multiplying [tex]\( F(x) \)[/tex] by [tex]\(-12 \)[/tex]:
[tex]\[ G(x) = -12 \cdot (x^3 - 8x^2 + 19x - 12) \][/tex]
Now, let's distribute [tex]\(-12\)[/tex] throughout the polynomial:
[tex]\[ G(x) = -12x^3 + 96x^2 - 228x + 144 \][/tex]
### Summary:
- Hill 1: The polynomial [tex]\( F(x) = (x-1)(x-3)(x-4) \)[/tex] gives [tex]\( F(x) = x^3 - 8x^2 + 19x - 12 \)[/tex].
- Hill 2: Transforming [tex]\( F(x) \)[/tex] by multiplying it by [tex]\(-12\)[/tex] results in [tex]\( G(x) = -12x^3 + 96x^2 - 228x + 144 \)[/tex].
These are the detailed steps to create and transform the polynomials for Hill 1 and Hill 2.
### Hill 1:
You want a polynomial with three peaks, and you have chosen three points on the [tex]\( x \)[/tex]-axis (the zeros), which are [tex]\( x = 1 \)[/tex], [tex]\( x = 3 \)[/tex], and [tex]\( x = 4 \)[/tex]. Representing each zero as a factor, you built the polynomial:
[tex]\[ F(x) = (x - 1)(x - 3)(x - 4) \][/tex]
Now, let's expand this polynomial:
1. First, expand [tex]\( (x - 1)(x - 3) \)[/tex]:
[tex]\[ (x - 1)(x - 3) = x^2 - 3x - x + 3 = x^2 - 4x + 3 \][/tex]
2. Next, expand this result with [tex]\( (x - 4) \)[/tex]:
[tex]\[(x^2 - 4x + 3)(x - 4)\][/tex]
Distribute each term in [tex]\( x^2 - 4x + 3 \)[/tex] by [tex]\( x - 4 \)[/tex]:
- [tex]\( x^2(x - 4) = x^3 - 4x^2 \)[/tex]
- [tex]\( -4x(x - 4) = -4x^2 + 16x \)[/tex]
- [tex]\( 3(x - 4) = 3x - 12 \)[/tex]
Combine these results:
[tex]\[ x^3 - 4x^2 - 4x^2 + 16x + 3x - 12 = x^3 - 8x^2 + 19x - 12 \][/tex]
### Hill 2:
Your second layer should be a transformation of the first polynomial, [tex]\( F(x) \)[/tex]. You indicated that this transformation involves multiplying the polynomial by [tex]\(-12\)[/tex] or by some combination involving [tex]\(-12\)[/tex].
We can suppose you meant multiplying [tex]\( F(x) \)[/tex] by [tex]\(-12 \)[/tex]:
[tex]\[ G(x) = -12 \cdot (x^3 - 8x^2 + 19x - 12) \][/tex]
Now, let's distribute [tex]\(-12\)[/tex] throughout the polynomial:
[tex]\[ G(x) = -12x^3 + 96x^2 - 228x + 144 \][/tex]
### Summary:
- Hill 1: The polynomial [tex]\( F(x) = (x-1)(x-3)(x-4) \)[/tex] gives [tex]\( F(x) = x^3 - 8x^2 + 19x - 12 \)[/tex].
- Hill 2: Transforming [tex]\( F(x) \)[/tex] by multiplying it by [tex]\(-12\)[/tex] results in [tex]\( G(x) = -12x^3 + 96x^2 - 228x + 144 \)[/tex].
These are the detailed steps to create and transform the polynomials for Hill 1 and Hill 2.
We hope this information was helpful. Feel free to return anytime for more answers to your questions and concerns. We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. We're glad you chose Westonci.ca. Revisit us for updated answers from our knowledgeable team.