Discover answers to your questions with Westonci.ca, the leading Q&A platform that connects you with knowledgeable experts. Experience the convenience of finding accurate answers to your questions from knowledgeable professionals on our platform. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform.

Hill 1: My first layer needs three peaks. I chose three points on the [tex]\(x\)[/tex]-axis (the three zeros), and then I wrote each as a binomial to create the first polynomial. [tex]\(F(x) = (x-1)(x-3)(x-4)\)[/tex]

Hill 2: My second layer should be a useful transformation of the first. Using the first polynomial as the base, I multiplied it by [tex]\(-12\)[/tex].


Sagot :

Let's tackle the task step-by-step based on the initial steps you provided for Hill 1 and Hill 2.

### Hill 1:
You want a polynomial with three peaks, and you have chosen three points on the [tex]\( x \)[/tex]-axis (the zeros), which are [tex]\( x = 1 \)[/tex], [tex]\( x = 3 \)[/tex], and [tex]\( x = 4 \)[/tex]. Representing each zero as a factor, you built the polynomial:
[tex]\[ F(x) = (x - 1)(x - 3)(x - 4) \][/tex]

Now, let's expand this polynomial:

1. First, expand [tex]\( (x - 1)(x - 3) \)[/tex]:
[tex]\[ (x - 1)(x - 3) = x^2 - 3x - x + 3 = x^2 - 4x + 3 \][/tex]

2. Next, expand this result with [tex]\( (x - 4) \)[/tex]:
[tex]\[(x^2 - 4x + 3)(x - 4)\][/tex]

Distribute each term in [tex]\( x^2 - 4x + 3 \)[/tex] by [tex]\( x - 4 \)[/tex]:

- [tex]\( x^2(x - 4) = x^3 - 4x^2 \)[/tex]
- [tex]\( -4x(x - 4) = -4x^2 + 16x \)[/tex]
- [tex]\( 3(x - 4) = 3x - 12 \)[/tex]

Combine these results:
[tex]\[ x^3 - 4x^2 - 4x^2 + 16x + 3x - 12 = x^3 - 8x^2 + 19x - 12 \][/tex]

### Hill 2:
Your second layer should be a transformation of the first polynomial, [tex]\( F(x) \)[/tex]. You indicated that this transformation involves multiplying the polynomial by [tex]\(-12\)[/tex] or by some combination involving [tex]\(-12\)[/tex].

We can suppose you meant multiplying [tex]\( F(x) \)[/tex] by [tex]\(-12 \)[/tex]:
[tex]\[ G(x) = -12 \cdot (x^3 - 8x^2 + 19x - 12) \][/tex]

Now, let's distribute [tex]\(-12\)[/tex] throughout the polynomial:
[tex]\[ G(x) = -12x^3 + 96x^2 - 228x + 144 \][/tex]

### Summary:
- Hill 1: The polynomial [tex]\( F(x) = (x-1)(x-3)(x-4) \)[/tex] gives [tex]\( F(x) = x^3 - 8x^2 + 19x - 12 \)[/tex].
- Hill 2: Transforming [tex]\( F(x) \)[/tex] by multiplying it by [tex]\(-12\)[/tex] results in [tex]\( G(x) = -12x^3 + 96x^2 - 228x + 144 \)[/tex].

These are the detailed steps to create and transform the polynomials for Hill 1 and Hill 2.
Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. Thank you for trusting Westonci.ca. Don't forget to revisit us for more accurate and insightful answers.