Explore Westonci.ca, the leading Q&A site where experts provide accurate and helpful answers to all your questions. Explore our Q&A platform to find in-depth answers from a wide range of experts in different fields. Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals.
Sagot :
Let's break down the question step-by-step.
The given chemical equation is:
[tex]\[ C_5H_{12} + 8 O_2 \rightarrow 5 CO_2 + 6 H_2O \][/tex]
We are provided with 3.50 moles of oxygen ([tex]\(O_2\)[/tex]) and we need to determine how many moles of pentane ([tex]\(C_5H_{12}\)[/tex]) can be formed from it.
1. Identify the mole ratio:
According to the balanced chemical equation, 1 mole of [tex]\(C_5H_{12}\)[/tex] reacts with 8 moles of [tex]\(O_2\)[/tex].
2. Determine the conversion factor:
To convert moles of [tex]\(O_2\)[/tex] to moles of [tex]\(C_5H_{12}\)[/tex], we use the mole ratio from the balanced equation:
[tex]\[ \frac{1 \text{ mole } C_5H_{12}}{8 \text{ moles } O_2} \][/tex]
3. Apply the conversion factor:
Multiply the given moles of [tex]\(O_2\)[/tex] by the conversion factor to get the moles of [tex]\(C_5H_{12}\)[/tex]:
[tex]\[ 3.50 \text{ moles } O_2 \times \frac{1 \text{ mole } C_5H_{12}}{8 \text{ moles } O_2} \][/tex]
4. Calculate:
[tex]\[ 3.50 \text{ moles } O_2 \times \frac{1 \text{ mole } C_5H_{12}}{8 \text{ moles } O_2} = 0.4375 \text{ moles } C_5H_{12} \][/tex]
Thus, from 3.50 moles of [tex]\(O_2\)[/tex], you can form 0.4375 moles of [tex]\(C_5H_{12}\)[/tex].
The correct option showing this conversion would be:
[tex]\[ 3.50 \text{ moles } O_2 \times \frac{1 \text{ mole } C_5H_{12}}{8 \text{ moles } O_2} \][/tex]
This option correctly uses the stoichiometric ratio from the balanced equation to find how many moles of [tex]\(C_5H_{12}\)[/tex] could be formed from the given moles of [tex]\(O_2\)[/tex].
The given chemical equation is:
[tex]\[ C_5H_{12} + 8 O_2 \rightarrow 5 CO_2 + 6 H_2O \][/tex]
We are provided with 3.50 moles of oxygen ([tex]\(O_2\)[/tex]) and we need to determine how many moles of pentane ([tex]\(C_5H_{12}\)[/tex]) can be formed from it.
1. Identify the mole ratio:
According to the balanced chemical equation, 1 mole of [tex]\(C_5H_{12}\)[/tex] reacts with 8 moles of [tex]\(O_2\)[/tex].
2. Determine the conversion factor:
To convert moles of [tex]\(O_2\)[/tex] to moles of [tex]\(C_5H_{12}\)[/tex], we use the mole ratio from the balanced equation:
[tex]\[ \frac{1 \text{ mole } C_5H_{12}}{8 \text{ moles } O_2} \][/tex]
3. Apply the conversion factor:
Multiply the given moles of [tex]\(O_2\)[/tex] by the conversion factor to get the moles of [tex]\(C_5H_{12}\)[/tex]:
[tex]\[ 3.50 \text{ moles } O_2 \times \frac{1 \text{ mole } C_5H_{12}}{8 \text{ moles } O_2} \][/tex]
4. Calculate:
[tex]\[ 3.50 \text{ moles } O_2 \times \frac{1 \text{ mole } C_5H_{12}}{8 \text{ moles } O_2} = 0.4375 \text{ moles } C_5H_{12} \][/tex]
Thus, from 3.50 moles of [tex]\(O_2\)[/tex], you can form 0.4375 moles of [tex]\(C_5H_{12}\)[/tex].
The correct option showing this conversion would be:
[tex]\[ 3.50 \text{ moles } O_2 \times \frac{1 \text{ mole } C_5H_{12}}{8 \text{ moles } O_2} \][/tex]
This option correctly uses the stoichiometric ratio from the balanced equation to find how many moles of [tex]\(C_5H_{12}\)[/tex] could be formed from the given moles of [tex]\(O_2\)[/tex].
We appreciate your visit. Hopefully, the answers you found were beneficial. Don't hesitate to come back for more information. Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. Thank you for trusting Westonci.ca. Don't forget to revisit us for more accurate and insightful answers.