Westonci.ca is your trusted source for finding answers to a wide range of questions, backed by a knowledgeable community. Experience the ease of finding accurate answers to your questions from a knowledgeable community of professionals. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform.
Sagot :
Let's find out whether [tex]$\triangle ABC$[/tex] is an isosceles triangle or a right triangle by computing the lengths of its sides and checking the necessary conditions for isosceles and right triangles.
First, let's determine the lengths of the sides [tex]\( \overline{AB} \)[/tex], [tex]\( \overline{BC} \)[/tex], and [tex]\( \overline{AC} \)[/tex].
### Length of [tex]\( \overline{AB} \)[/tex]
The points [tex]$A$[/tex] and [tex]$B$[/tex] are given as [tex]\( A(2,0) \)[/tex] and [tex]\( B(4,4) \)[/tex].
The distance formula is:
[tex]\[ AB = \sqrt{(x_B - x_A)^2 + (y_B - y_A)^2} \][/tex]
Substituting the coordinates of [tex]$A$[/tex] and [tex]$B$[/tex]:
[tex]\[ AB = \sqrt{(4 - 2)^2 + (4 - 0)^2} = \sqrt{(2)^2 + (4)^2} = \sqrt{4 + 16} = \sqrt{20} \approx 4.472 \][/tex]
### Length of [tex]\( \overline{BC} \)[/tex]
The points [tex]$B$[/tex] and [tex]$C$[/tex] are given as [tex]\( B(4,4) \)[/tex] and [tex]\( C(6,3) \)[/tex].
The distance formula is:
[tex]\[ BC = \sqrt{(x_C - x_B)^2 + (y_C - y_B)^2} \][/tex]
Substituting the coordinates of [tex]$B$[/tex] and [tex]$C$[/tex]:
[tex]\[ BC = \sqrt{(6 - 4)^2 + (3 - 4)^2} = \sqrt{(2)^2 + (-1)^2} = \sqrt{4 + 1} = \sqrt{5} \approx 2.236 \][/tex]
### Length of [tex]\( \overline{AC} \)[/tex]
The points [tex]$A$[/tex] and [tex]$C$[/tex] are given as [tex]\( A(2,0) \)[/tex] and [tex]\( C(6,3) \)[/tex].
The distance formula is:
[tex]\[ AC = \sqrt{(x_C - x_A)^2 + (y_C - y_A)^2} \][/tex]
Substituting the coordinates of [tex]$A$[/tex] and [tex]$C$[/tex]:
[tex]\[ AC = \sqrt{(6 - 2)^2 + (3 - 0)^2} = \sqrt{(4)^2 + (3)^2} = \sqrt{16 + 9} = \sqrt{25} = 5 \][/tex]
### Checking for Isosceles Triangle
To check if [tex]$\triangle ABC$[/tex] is isosceles, we need to see if any two sides are of equal length.
We have:
[tex]\[ AB \approx 4.472, \quad BC \approx 2.236, \quad AC = 5 \][/tex]
Since none of the lengths are approximately equal, [tex]\(\triangle ABC\)[/tex] is not isosceles.
### Checking for Right Triangle
To check if [tex]$\triangle ABC$[/tex] is a right triangle, we need to use the Pythagorean theorem and verify if any combination of sides satisfies:
[tex]\[ a^2 + b^2 = c^2 \][/tex]
Let's test the following combinations:
1. [tex]\(AB^2 + BC^2 \approx AC^2\)[/tex]:
[tex]\[ (4.472)^2 + (2.236)^2 \approx 5^2 \][/tex]
[tex]\[ 20 + 5 \approx 25 \quad \text{(True)} \][/tex]
Since [tex]\(AB^2 + BC^2 = AC^2\)[/tex], we confirm that [tex]\(\triangle ABC\)[/tex] is a right triangle.
Therefore, Verna is correct because [tex]\(\overline{BC} \perp \overline{AC}\)[/tex].
Answer: Verna, because [tex]\(\overline{BC} \perp \overline{AC}\)[/tex]
First, let's determine the lengths of the sides [tex]\( \overline{AB} \)[/tex], [tex]\( \overline{BC} \)[/tex], and [tex]\( \overline{AC} \)[/tex].
### Length of [tex]\( \overline{AB} \)[/tex]
The points [tex]$A$[/tex] and [tex]$B$[/tex] are given as [tex]\( A(2,0) \)[/tex] and [tex]\( B(4,4) \)[/tex].
The distance formula is:
[tex]\[ AB = \sqrt{(x_B - x_A)^2 + (y_B - y_A)^2} \][/tex]
Substituting the coordinates of [tex]$A$[/tex] and [tex]$B$[/tex]:
[tex]\[ AB = \sqrt{(4 - 2)^2 + (4 - 0)^2} = \sqrt{(2)^2 + (4)^2} = \sqrt{4 + 16} = \sqrt{20} \approx 4.472 \][/tex]
### Length of [tex]\( \overline{BC} \)[/tex]
The points [tex]$B$[/tex] and [tex]$C$[/tex] are given as [tex]\( B(4,4) \)[/tex] and [tex]\( C(6,3) \)[/tex].
The distance formula is:
[tex]\[ BC = \sqrt{(x_C - x_B)^2 + (y_C - y_B)^2} \][/tex]
Substituting the coordinates of [tex]$B$[/tex] and [tex]$C$[/tex]:
[tex]\[ BC = \sqrt{(6 - 4)^2 + (3 - 4)^2} = \sqrt{(2)^2 + (-1)^2} = \sqrt{4 + 1} = \sqrt{5} \approx 2.236 \][/tex]
### Length of [tex]\( \overline{AC} \)[/tex]
The points [tex]$A$[/tex] and [tex]$C$[/tex] are given as [tex]\( A(2,0) \)[/tex] and [tex]\( C(6,3) \)[/tex].
The distance formula is:
[tex]\[ AC = \sqrt{(x_C - x_A)^2 + (y_C - y_A)^2} \][/tex]
Substituting the coordinates of [tex]$A$[/tex] and [tex]$C$[/tex]:
[tex]\[ AC = \sqrt{(6 - 2)^2 + (3 - 0)^2} = \sqrt{(4)^2 + (3)^2} = \sqrt{16 + 9} = \sqrt{25} = 5 \][/tex]
### Checking for Isosceles Triangle
To check if [tex]$\triangle ABC$[/tex] is isosceles, we need to see if any two sides are of equal length.
We have:
[tex]\[ AB \approx 4.472, \quad BC \approx 2.236, \quad AC = 5 \][/tex]
Since none of the lengths are approximately equal, [tex]\(\triangle ABC\)[/tex] is not isosceles.
### Checking for Right Triangle
To check if [tex]$\triangle ABC$[/tex] is a right triangle, we need to use the Pythagorean theorem and verify if any combination of sides satisfies:
[tex]\[ a^2 + b^2 = c^2 \][/tex]
Let's test the following combinations:
1. [tex]\(AB^2 + BC^2 \approx AC^2\)[/tex]:
[tex]\[ (4.472)^2 + (2.236)^2 \approx 5^2 \][/tex]
[tex]\[ 20 + 5 \approx 25 \quad \text{(True)} \][/tex]
Since [tex]\(AB^2 + BC^2 = AC^2\)[/tex], we confirm that [tex]\(\triangle ABC\)[/tex] is a right triangle.
Therefore, Verna is correct because [tex]\(\overline{BC} \perp \overline{AC}\)[/tex].
Answer: Verna, because [tex]\(\overline{BC} \perp \overline{AC}\)[/tex]
Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. We're dedicated to helping you find the answers you need at Westonci.ca. Don't hesitate to return for more.