Westonci.ca offers fast, accurate answers to your questions. Join our community and get the insights you need now. Join our platform to connect with experts ready to provide accurate answers to your questions in various fields. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts.

[tex]\(\triangle ABC\)[/tex] is located at [tex]\(A(2,0)\)[/tex], [tex]\(B(4,4)\)[/tex], and [tex]\(C(6,3)\)[/tex]. Zackery says that [tex]\(\triangle ABC\)[/tex] is an isosceles triangle, while Verna says that it is a right triangle. Who is correct?

A. Zackery, because [tex]\(\overline{BC} \simeq \overline{AC}\)[/tex]

B. Zackery, because [tex]\(\overline{AB} \simeq \overline{BC}\)[/tex]

C. Verna, because [tex]\(\overline{BC} \perp \overline{AC}\)[/tex]

D. Verna, because [tex]\(\overline{AB} \perp \overline{BC}\)[/tex]


Sagot :

Let's find out whether [tex]$\triangle ABC$[/tex] is an isosceles triangle or a right triangle by computing the lengths of its sides and checking the necessary conditions for isosceles and right triangles.

First, let's determine the lengths of the sides [tex]\( \overline{AB} \)[/tex], [tex]\( \overline{BC} \)[/tex], and [tex]\( \overline{AC} \)[/tex].

### Length of [tex]\( \overline{AB} \)[/tex]
The points [tex]$A$[/tex] and [tex]$B$[/tex] are given as [tex]\( A(2,0) \)[/tex] and [tex]\( B(4,4) \)[/tex].
The distance formula is:
[tex]\[ AB = \sqrt{(x_B - x_A)^2 + (y_B - y_A)^2} \][/tex]
Substituting the coordinates of [tex]$A$[/tex] and [tex]$B$[/tex]:
[tex]\[ AB = \sqrt{(4 - 2)^2 + (4 - 0)^2} = \sqrt{(2)^2 + (4)^2} = \sqrt{4 + 16} = \sqrt{20} \approx 4.472 \][/tex]

### Length of [tex]\( \overline{BC} \)[/tex]
The points [tex]$B$[/tex] and [tex]$C$[/tex] are given as [tex]\( B(4,4) \)[/tex] and [tex]\( C(6,3) \)[/tex].
The distance formula is:
[tex]\[ BC = \sqrt{(x_C - x_B)^2 + (y_C - y_B)^2} \][/tex]
Substituting the coordinates of [tex]$B$[/tex] and [tex]$C$[/tex]:
[tex]\[ BC = \sqrt{(6 - 4)^2 + (3 - 4)^2} = \sqrt{(2)^2 + (-1)^2} = \sqrt{4 + 1} = \sqrt{5} \approx 2.236 \][/tex]

### Length of [tex]\( \overline{AC} \)[/tex]
The points [tex]$A$[/tex] and [tex]$C$[/tex] are given as [tex]\( A(2,0) \)[/tex] and [tex]\( C(6,3) \)[/tex].
The distance formula is:
[tex]\[ AC = \sqrt{(x_C - x_A)^2 + (y_C - y_A)^2} \][/tex]
Substituting the coordinates of [tex]$A$[/tex] and [tex]$C$[/tex]:
[tex]\[ AC = \sqrt{(6 - 2)^2 + (3 - 0)^2} = \sqrt{(4)^2 + (3)^2} = \sqrt{16 + 9} = \sqrt{25} = 5 \][/tex]

### Checking for Isosceles Triangle
To check if [tex]$\triangle ABC$[/tex] is isosceles, we need to see if any two sides are of equal length.

We have:
[tex]\[ AB \approx 4.472, \quad BC \approx 2.236, \quad AC = 5 \][/tex]
Since none of the lengths are approximately equal, [tex]\(\triangle ABC\)[/tex] is not isosceles.

### Checking for Right Triangle
To check if [tex]$\triangle ABC$[/tex] is a right triangle, we need to use the Pythagorean theorem and verify if any combination of sides satisfies:
[tex]\[ a^2 + b^2 = c^2 \][/tex]
Let's test the following combinations:

1. [tex]\(AB^2 + BC^2 \approx AC^2\)[/tex]:
[tex]\[ (4.472)^2 + (2.236)^2 \approx 5^2 \][/tex]
[tex]\[ 20 + 5 \approx 25 \quad \text{(True)} \][/tex]

Since [tex]\(AB^2 + BC^2 = AC^2\)[/tex], we confirm that [tex]\(\triangle ABC\)[/tex] is a right triangle.

Therefore, Verna is correct because [tex]\(\overline{BC} \perp \overline{AC}\)[/tex].

Answer: Verna, because [tex]\(\overline{BC} \perp \overline{AC}\)[/tex]