Westonci.ca is the ultimate Q&A platform, offering detailed and reliable answers from a knowledgeable community. Ask your questions and receive precise answers from experienced professionals across different disciplines. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform.
Sagot :
To determine which point maps onto itself after a reflection across the line [tex]\( y = -x \)[/tex], we need to analyze what happens to a point [tex]\((a, b)\)[/tex] when it is reflected over this line.
The formula for reflecting a point [tex]\((a, b)\)[/tex] across the line [tex]\( y = -x \)[/tex] results in the new coordinates [tex]\((-b, -a)\)[/tex].
For a point to map onto itself, its coordinates must satisfy the condition:
[tex]\[ (a, b) = (-b, -a) \][/tex]
This leads to the following system of equations:
[tex]\[ a = -b \][/tex]
[tex]\[ b = -a \][/tex]
These are two expressions of the same condition, essentially meaning [tex]\( a \)[/tex] must be the negative of [tex]\( b \)[/tex].
Let's now analyze each point given in the problem:
1. Point (-4, -4):
- Reflect [tex]\((-4, -4)\)[/tex] across [tex]\( y = -x \)[/tex]:
[tex]\[ (-(-4), -(-4)) = (4, 4) \][/tex]
[tex]\((-4, -4)\)[/tex] does not map onto itself.
2. Point (-4, 0):
- Reflect [tex]\((-4, 0)\)[/tex] across [tex]\( y = -x \)[/tex]:
[tex]\[ (0, 4) \][/tex]
[tex]\((-4, 0)\)[/tex] does not map onto itself.
3. Point (0, -4):
- Reflect [tex]\((0, -4)\)[/tex] across [tex]\( y = -x \)[/tex]:
[tex]\[ (4, 0) \][/tex]
[tex]\((0, -4)\)[/tex] does not map onto itself.
4. Point (4, -4):
- Reflect [tex]\( (4, -4)\)[/tex] across [tex]\( y = -x \)[/tex]:
[tex]\[ (4, -4) \rightarrow (4, -4) \][/tex]
We see that [tex]\( (4, -4) \)[/tex] maps back to itself.
By analyzing each point, we conclude that the point that maps onto itself after a reflection across the line [tex]\( y = -x \)[/tex] is:
[tex]\( \boxed{(4, -4)} \)[/tex]
The formula for reflecting a point [tex]\((a, b)\)[/tex] across the line [tex]\( y = -x \)[/tex] results in the new coordinates [tex]\((-b, -a)\)[/tex].
For a point to map onto itself, its coordinates must satisfy the condition:
[tex]\[ (a, b) = (-b, -a) \][/tex]
This leads to the following system of equations:
[tex]\[ a = -b \][/tex]
[tex]\[ b = -a \][/tex]
These are two expressions of the same condition, essentially meaning [tex]\( a \)[/tex] must be the negative of [tex]\( b \)[/tex].
Let's now analyze each point given in the problem:
1. Point (-4, -4):
- Reflect [tex]\((-4, -4)\)[/tex] across [tex]\( y = -x \)[/tex]:
[tex]\[ (-(-4), -(-4)) = (4, 4) \][/tex]
[tex]\((-4, -4)\)[/tex] does not map onto itself.
2. Point (-4, 0):
- Reflect [tex]\((-4, 0)\)[/tex] across [tex]\( y = -x \)[/tex]:
[tex]\[ (0, 4) \][/tex]
[tex]\((-4, 0)\)[/tex] does not map onto itself.
3. Point (0, -4):
- Reflect [tex]\((0, -4)\)[/tex] across [tex]\( y = -x \)[/tex]:
[tex]\[ (4, 0) \][/tex]
[tex]\((0, -4)\)[/tex] does not map onto itself.
4. Point (4, -4):
- Reflect [tex]\( (4, -4)\)[/tex] across [tex]\( y = -x \)[/tex]:
[tex]\[ (4, -4) \rightarrow (4, -4) \][/tex]
We see that [tex]\( (4, -4) \)[/tex] maps back to itself.
By analyzing each point, we conclude that the point that maps onto itself after a reflection across the line [tex]\( y = -x \)[/tex] is:
[tex]\( \boxed{(4, -4)} \)[/tex]
Thank you for trusting us with your questions. We're here to help you find accurate answers quickly and efficiently. Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. Your questions are important to us at Westonci.ca. Visit again for expert answers and reliable information.