At Westonci.ca, we connect you with the best answers from a community of experienced and knowledgeable individuals. Explore thousands of questions and answers from a knowledgeable community of experts ready to help you find solutions. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals.
Sagot :
To determine which point maps onto itself after a reflection across the line [tex]\( y = -x \)[/tex], we need to analyze what happens to a point [tex]\((a, b)\)[/tex] when it is reflected over this line.
The formula for reflecting a point [tex]\((a, b)\)[/tex] across the line [tex]\( y = -x \)[/tex] results in the new coordinates [tex]\((-b, -a)\)[/tex].
For a point to map onto itself, its coordinates must satisfy the condition:
[tex]\[ (a, b) = (-b, -a) \][/tex]
This leads to the following system of equations:
[tex]\[ a = -b \][/tex]
[tex]\[ b = -a \][/tex]
These are two expressions of the same condition, essentially meaning [tex]\( a \)[/tex] must be the negative of [tex]\( b \)[/tex].
Let's now analyze each point given in the problem:
1. Point (-4, -4):
- Reflect [tex]\((-4, -4)\)[/tex] across [tex]\( y = -x \)[/tex]:
[tex]\[ (-(-4), -(-4)) = (4, 4) \][/tex]
[tex]\((-4, -4)\)[/tex] does not map onto itself.
2. Point (-4, 0):
- Reflect [tex]\((-4, 0)\)[/tex] across [tex]\( y = -x \)[/tex]:
[tex]\[ (0, 4) \][/tex]
[tex]\((-4, 0)\)[/tex] does not map onto itself.
3. Point (0, -4):
- Reflect [tex]\((0, -4)\)[/tex] across [tex]\( y = -x \)[/tex]:
[tex]\[ (4, 0) \][/tex]
[tex]\((0, -4)\)[/tex] does not map onto itself.
4. Point (4, -4):
- Reflect [tex]\( (4, -4)\)[/tex] across [tex]\( y = -x \)[/tex]:
[tex]\[ (4, -4) \rightarrow (4, -4) \][/tex]
We see that [tex]\( (4, -4) \)[/tex] maps back to itself.
By analyzing each point, we conclude that the point that maps onto itself after a reflection across the line [tex]\( y = -x \)[/tex] is:
[tex]\( \boxed{(4, -4)} \)[/tex]
The formula for reflecting a point [tex]\((a, b)\)[/tex] across the line [tex]\( y = -x \)[/tex] results in the new coordinates [tex]\((-b, -a)\)[/tex].
For a point to map onto itself, its coordinates must satisfy the condition:
[tex]\[ (a, b) = (-b, -a) \][/tex]
This leads to the following system of equations:
[tex]\[ a = -b \][/tex]
[tex]\[ b = -a \][/tex]
These are two expressions of the same condition, essentially meaning [tex]\( a \)[/tex] must be the negative of [tex]\( b \)[/tex].
Let's now analyze each point given in the problem:
1. Point (-4, -4):
- Reflect [tex]\((-4, -4)\)[/tex] across [tex]\( y = -x \)[/tex]:
[tex]\[ (-(-4), -(-4)) = (4, 4) \][/tex]
[tex]\((-4, -4)\)[/tex] does not map onto itself.
2. Point (-4, 0):
- Reflect [tex]\((-4, 0)\)[/tex] across [tex]\( y = -x \)[/tex]:
[tex]\[ (0, 4) \][/tex]
[tex]\((-4, 0)\)[/tex] does not map onto itself.
3. Point (0, -4):
- Reflect [tex]\((0, -4)\)[/tex] across [tex]\( y = -x \)[/tex]:
[tex]\[ (4, 0) \][/tex]
[tex]\((0, -4)\)[/tex] does not map onto itself.
4. Point (4, -4):
- Reflect [tex]\( (4, -4)\)[/tex] across [tex]\( y = -x \)[/tex]:
[tex]\[ (4, -4) \rightarrow (4, -4) \][/tex]
We see that [tex]\( (4, -4) \)[/tex] maps back to itself.
By analyzing each point, we conclude that the point that maps onto itself after a reflection across the line [tex]\( y = -x \)[/tex] is:
[tex]\( \boxed{(4, -4)} \)[/tex]
Visit us again for up-to-date and reliable answers. We're always ready to assist you with your informational needs. We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. We're glad you visited Westonci.ca. Return anytime for updated answers from our knowledgeable team.