Discover answers to your most pressing questions at Westonci.ca, the ultimate Q&A platform that connects you with expert solutions. Join our Q&A platform to connect with experts dedicated to providing precise answers to your questions in different areas. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields.
Sagot :
Let's fill in the table step-by-step based on the given details about the investment of [tex]$\$[/tex]10,000[tex]$ at $[/tex]3.5\%[tex]$ interest for 18 years under various compounding options.
First, we summarize the necessary formulas for each compounding method.
### Compounding Annually
For annual compounding, the formula is:
\[ A = P \left(1 + \frac{r}{n}\right)^{nt} \]
Where \( P \) is the principal amount (\$[/tex]10,000), [tex]\( r \)[/tex] is the annual interest rate (0.035), [tex]\( n \)[/tex] is the number of times the interest is compounded per year (1 for annually), and [tex]\( t \)[/tex] is the time the money is invested for (18 years).
### Compounding Quarterly
For quarterly compounding, the formula is the same:
[tex]\[ A = P \left(1 + \frac{r}{n}\right)^{nt} \][/tex]
Where [tex]\( n = 4 \)[/tex] (since interest is compounded quarterly).
### Compounding Monthly
For monthly compounding, the formula is:
[tex]\[ A = P \left(1 + \frac{r}{n}\right)^{nt} \][/tex]
Where [tex]\( n = 12 \)[/tex] (since interest is compounded monthly).
### Compounding Daily
For daily compounding, the formula is:
[tex]\[ A = P \left(1 + \frac{r}{n}\right)^{nt} \][/tex]
Where [tex]\( n = 365 \)[/tex] (since interest is compounded daily).
### Compounding Continuously
For continuous compounding, the formula is:
[tex]\[ A = P e^{rt} \][/tex]
Where [tex]\( e \)[/tex] is the base of the natural logarithm (approximately 2.71828).
Let's fill in the table with the results:
[tex]\[ \begin{tabular}{|l|l|c|c|} \hline & Compounding Option & n Value & Result \\ \hline (a) & Annually & n = 1 & \$ 18,574.89 \\ \hline (b) & Quarterly & n = 4 & \$ 18,724.72 \\ \hline (c) & Monthly & n = 12 & \$ 18,758.90 \\ \hline (d) & Daily & n = 365 & \$ 18,775.54 \\ \hline (e) & Continuously & Not Applicable & \$ 18,776.11 \\ \hline \end{tabular} \][/tex]
Here is a concise detailed explanation of the process used to arrive at each value:
1. Annually: The interest is compounded once per year (n = 1). The future value after 18 years is \[tex]$ 18,574.89. 2. Quarterly: The interest is compounded four times per year (n = 4). The future value after 18 years is \$[/tex] 18,724.72.
3. Monthly: The interest is compounded twelve times per year (n = 12). The future value after 18 years is \[tex]$ 18,758.90. 4. Daily: The interest is compounded daily (n = 365). The future value after 18 years is \$[/tex] 18,775.54.
5. Continuously: The interest is compounded continuously, meaning the number of compounding periods approaches infinity. The future value after 18 years is \$ 18,776.11.
This table clearly demonstrates the effect of increasing the frequency of compounding on the accumulated amount. As the compounding frequency increases, the future value slightly increases as well.
### Compounding Quarterly
For quarterly compounding, the formula is the same:
[tex]\[ A = P \left(1 + \frac{r}{n}\right)^{nt} \][/tex]
Where [tex]\( n = 4 \)[/tex] (since interest is compounded quarterly).
### Compounding Monthly
For monthly compounding, the formula is:
[tex]\[ A = P \left(1 + \frac{r}{n}\right)^{nt} \][/tex]
Where [tex]\( n = 12 \)[/tex] (since interest is compounded monthly).
### Compounding Daily
For daily compounding, the formula is:
[tex]\[ A = P \left(1 + \frac{r}{n}\right)^{nt} \][/tex]
Where [tex]\( n = 365 \)[/tex] (since interest is compounded daily).
### Compounding Continuously
For continuous compounding, the formula is:
[tex]\[ A = P e^{rt} \][/tex]
Where [tex]\( e \)[/tex] is the base of the natural logarithm (approximately 2.71828).
Let's fill in the table with the results:
[tex]\[ \begin{tabular}{|l|l|c|c|} \hline & Compounding Option & n Value & Result \\ \hline (a) & Annually & n = 1 & \$ 18,574.89 \\ \hline (b) & Quarterly & n = 4 & \$ 18,724.72 \\ \hline (c) & Monthly & n = 12 & \$ 18,758.90 \\ \hline (d) & Daily & n = 365 & \$ 18,775.54 \\ \hline (e) & Continuously & Not Applicable & \$ 18,776.11 \\ \hline \end{tabular} \][/tex]
Here is a concise detailed explanation of the process used to arrive at each value:
1. Annually: The interest is compounded once per year (n = 1). The future value after 18 years is \[tex]$ 18,574.89. 2. Quarterly: The interest is compounded four times per year (n = 4). The future value after 18 years is \$[/tex] 18,724.72.
3. Monthly: The interest is compounded twelve times per year (n = 12). The future value after 18 years is \[tex]$ 18,758.90. 4. Daily: The interest is compounded daily (n = 365). The future value after 18 years is \$[/tex] 18,775.54.
5. Continuously: The interest is compounded continuously, meaning the number of compounding periods approaches infinity. The future value after 18 years is \$ 18,776.11.
This table clearly demonstrates the effect of increasing the frequency of compounding on the accumulated amount. As the compounding frequency increases, the future value slightly increases as well.
We appreciate your time. Please come back anytime for the latest information and answers to your questions. We hope this was helpful. Please come back whenever you need more information or answers to your queries. We're glad you chose Westonci.ca. Revisit us for updated answers from our knowledgeable team.