Looking for answers? Westonci.ca is your go-to Q&A platform, offering quick, trustworthy responses from a community of experts. Discover a wealth of knowledge from professionals across various disciplines on our user-friendly Q&A platform. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform.
Sagot :
To solve the problem, let's break it down step by step:
1. Initial Socks Count:
Jim's sock drawer contains the following pairs:
- 2 pairs of black socks: [tex]\(2 \times 2 = 4\)[/tex] black socks.
- 3 pairs of white socks: [tex]\(3 \times 2 = 6\)[/tex] white socks.
- 1 pair of green socks: [tex]\(1 \times 2 = 2\)[/tex] green socks.
- 2 pairs of gray socks: [tex]\(2 \times 2 = 4\)[/tex] gray socks.
Therefore, the initial total number of socks is:
[tex]\[ 4 \text{(black)} + 6 \text{(white)} + 2 \text{(green)} + 4 \text{(gray)} = 16 \text{ socks} \][/tex]
2. Socks Picked by Jim:
Jim picks 1 black, 1 white, and 1 gray sock. After picking these socks, the remaining socks are:
- Black socks: [tex]\(4 - 1 = 3\)[/tex]
- White socks: [tex]\(6 - 1 = 5\)[/tex]
- Green socks: [tex]\(2\)[/tex] (unchanged)
- Gray socks: [tex]\(4 - 1 = 3\)[/tex]
So the total number of socks left after Jim picks three socks is:
[tex]\[ 3 \text{(black)} + 5 \text{(white)} + 2 \text{(green)} + 3 \text{(gray)} = 13 \text{ socks} \][/tex]
3. Favorable Outcomes:
To complete a pair, Jim needs to pick either another black, white, or gray sock. The count of these socks is:
- Black socks: [tex]\(3\)[/tex]
- White socks: [tex]\(5\)[/tex]
- Gray socks: [tex]\(3\)[/tex]
Thus, the number of favorable outcomes is:
[tex]\[ 3 \text{(black)} + 5 \text{(white)} + 3 \text{(gray)} = 11 \text{ favorable socks} \][/tex]
4. Probability Calculation:
The probability that Jim will pick a sock that completes a pair is the number of favorable outcomes divided by the total number of remaining socks:
[tex]\[ \text{Probability} = \frac{\text{Number of favorable outcomes}}{\text{Total number of remaining socks}} = \frac{11}{13} \][/tex]
Therefore, the correct answer is:
[tex]\[ \boxed{\frac{11}{13}} \][/tex]
1. Initial Socks Count:
Jim's sock drawer contains the following pairs:
- 2 pairs of black socks: [tex]\(2 \times 2 = 4\)[/tex] black socks.
- 3 pairs of white socks: [tex]\(3 \times 2 = 6\)[/tex] white socks.
- 1 pair of green socks: [tex]\(1 \times 2 = 2\)[/tex] green socks.
- 2 pairs of gray socks: [tex]\(2 \times 2 = 4\)[/tex] gray socks.
Therefore, the initial total number of socks is:
[tex]\[ 4 \text{(black)} + 6 \text{(white)} + 2 \text{(green)} + 4 \text{(gray)} = 16 \text{ socks} \][/tex]
2. Socks Picked by Jim:
Jim picks 1 black, 1 white, and 1 gray sock. After picking these socks, the remaining socks are:
- Black socks: [tex]\(4 - 1 = 3\)[/tex]
- White socks: [tex]\(6 - 1 = 5\)[/tex]
- Green socks: [tex]\(2\)[/tex] (unchanged)
- Gray socks: [tex]\(4 - 1 = 3\)[/tex]
So the total number of socks left after Jim picks three socks is:
[tex]\[ 3 \text{(black)} + 5 \text{(white)} + 2 \text{(green)} + 3 \text{(gray)} = 13 \text{ socks} \][/tex]
3. Favorable Outcomes:
To complete a pair, Jim needs to pick either another black, white, or gray sock. The count of these socks is:
- Black socks: [tex]\(3\)[/tex]
- White socks: [tex]\(5\)[/tex]
- Gray socks: [tex]\(3\)[/tex]
Thus, the number of favorable outcomes is:
[tex]\[ 3 \text{(black)} + 5 \text{(white)} + 3 \text{(gray)} = 11 \text{ favorable socks} \][/tex]
4. Probability Calculation:
The probability that Jim will pick a sock that completes a pair is the number of favorable outcomes divided by the total number of remaining socks:
[tex]\[ \text{Probability} = \frac{\text{Number of favorable outcomes}}{\text{Total number of remaining socks}} = \frac{11}{13} \][/tex]
Therefore, the correct answer is:
[tex]\[ \boxed{\frac{11}{13}} \][/tex]
We appreciate your visit. Hopefully, the answers you found were beneficial. Don't hesitate to come back for more information. We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. Thank you for using Westonci.ca. Come back for more in-depth answers to all your queries.