At Westonci.ca, we connect you with the best answers from a community of experienced and knowledgeable individuals. Get detailed and accurate answers to your questions from a community of experts on our comprehensive Q&A platform. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform.
Sagot :
Let's solve this step-by-step.
### Given Data:
We are provided with percentages regarding the use of seat-belts and the percentage of drivers stopped for moving violations in two groups:
- Group I (using seat-belts):
- Percentage of drivers in this group: [tex]\( 61\% \)[/tex]
- Percentage of drivers in this group stopped for a moving violation: [tex]\( 0.4\% \)[/tex]
- Group II (not using seat-belts):
- Percentage of drivers in this group: [tex]\( 39\% \)[/tex]
- Percentage of drivers in this group stopped for a moving violation: [tex]\( 0.3\% \)[/tex]
### Step-by-Step Solution:
#### Part (a): Probability that a stopped driver will have a seat-belt on.
1. Convert percentages to decimals:
- [tex]\( P(\text{Seat-belt on}) = 0.61 \)[/tex]
- [tex]\( P(\text{No seat-belt}) = 0.39 \)[/tex]
- [tex]\( P(\text{Stopped with seat-belt}) = 0.004 \)[/tex]
- [tex]\( P(\text{Stopped without seat-belt}) = 0.003 \)[/tex]
2. Calculate the total probability of being stopped:
[tex]\[ P(\text{Stopped}) = P(\text{Seat-belt on}) \times P(\text{Stopped with seat-belt}) + P(\text{No seat-belt}) \times P(\text{Stopped without seat-belt}) \][/tex]
[tex]\[ P(\text{Stopped}) = 0.61 \times 0.004 + 0.39 \times 0.003 = 0.00244 + 0.00117 = 0.00361 \][/tex]
3. Calculate the probability of having a seat-belt on when stopped:
[tex]\[ P(\text{Seat-belt on} \mid \text{Stopped}) = \frac{P(\text{Seat-belt on}) \times P(\text{Stopped with seat-belt})}{P(\text{Stopped})} \][/tex]
[tex]\[ P(\text{Seat-belt on} \mid \text{Stopped}) = \frac{0.61 \times 0.004}{0.00361} = \frac{0.00244}{0.00361} \approx 0.676 \][/tex]
Therefore, the probability that a stopped driver will have a seat-belt on is approximately [tex]\( 0.676 \)[/tex].
#### Part (b): Probability that a stopped driver will not have a seat-belt on.
1. Calculate the probability of not having a seat-belt on when stopped:
[tex]\[ P(\text{No seat-belt} \mid \text{Stopped}) = \frac{P(\text{No seat-belt}) \times P(\text{Stopped without seat-belt})}{P(\text{Stopped})} \][/tex]
[tex]\[ P(\text{No seat-belt} \mid \text{Stopped}) = \frac{0.39 \times 0.003}{0.00361} = \frac{0.00117}{0.00361} \approx 0.324 \][/tex]
Therefore, the probability that a stopped driver will not have a seat-belt on is approximately [tex]\( 0.324 \)[/tex].
### Summary:
- (a) The probability that a stopped driver will have a seat-belt on is approximately [tex]\( 0.676 \)[/tex].
- (b) The probability that a stopped driver will not have a seat-belt on is approximately [tex]\( 0.324 \)[/tex].
### Given Data:
We are provided with percentages regarding the use of seat-belts and the percentage of drivers stopped for moving violations in two groups:
- Group I (using seat-belts):
- Percentage of drivers in this group: [tex]\( 61\% \)[/tex]
- Percentage of drivers in this group stopped for a moving violation: [tex]\( 0.4\% \)[/tex]
- Group II (not using seat-belts):
- Percentage of drivers in this group: [tex]\( 39\% \)[/tex]
- Percentage of drivers in this group stopped for a moving violation: [tex]\( 0.3\% \)[/tex]
### Step-by-Step Solution:
#### Part (a): Probability that a stopped driver will have a seat-belt on.
1. Convert percentages to decimals:
- [tex]\( P(\text{Seat-belt on}) = 0.61 \)[/tex]
- [tex]\( P(\text{No seat-belt}) = 0.39 \)[/tex]
- [tex]\( P(\text{Stopped with seat-belt}) = 0.004 \)[/tex]
- [tex]\( P(\text{Stopped without seat-belt}) = 0.003 \)[/tex]
2. Calculate the total probability of being stopped:
[tex]\[ P(\text{Stopped}) = P(\text{Seat-belt on}) \times P(\text{Stopped with seat-belt}) + P(\text{No seat-belt}) \times P(\text{Stopped without seat-belt}) \][/tex]
[tex]\[ P(\text{Stopped}) = 0.61 \times 0.004 + 0.39 \times 0.003 = 0.00244 + 0.00117 = 0.00361 \][/tex]
3. Calculate the probability of having a seat-belt on when stopped:
[tex]\[ P(\text{Seat-belt on} \mid \text{Stopped}) = \frac{P(\text{Seat-belt on}) \times P(\text{Stopped with seat-belt})}{P(\text{Stopped})} \][/tex]
[tex]\[ P(\text{Seat-belt on} \mid \text{Stopped}) = \frac{0.61 \times 0.004}{0.00361} = \frac{0.00244}{0.00361} \approx 0.676 \][/tex]
Therefore, the probability that a stopped driver will have a seat-belt on is approximately [tex]\( 0.676 \)[/tex].
#### Part (b): Probability that a stopped driver will not have a seat-belt on.
1. Calculate the probability of not having a seat-belt on when stopped:
[tex]\[ P(\text{No seat-belt} \mid \text{Stopped}) = \frac{P(\text{No seat-belt}) \times P(\text{Stopped without seat-belt})}{P(\text{Stopped})} \][/tex]
[tex]\[ P(\text{No seat-belt} \mid \text{Stopped}) = \frac{0.39 \times 0.003}{0.00361} = \frac{0.00117}{0.00361} \approx 0.324 \][/tex]
Therefore, the probability that a stopped driver will not have a seat-belt on is approximately [tex]\( 0.324 \)[/tex].
### Summary:
- (a) The probability that a stopped driver will have a seat-belt on is approximately [tex]\( 0.676 \)[/tex].
- (b) The probability that a stopped driver will not have a seat-belt on is approximately [tex]\( 0.324 \)[/tex].
Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. We're glad you visited Westonci.ca. Return anytime for updated answers from our knowledgeable team.