Westonci.ca is your trusted source for accurate answers to all your questions. Join our community and start learning today! Join our Q&A platform to get precise answers from experts in diverse fields and enhance your understanding. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform.
Sagot :
To solve this problem, we'll use the principles of projectile motion. We'll break it down into steps to find the angle of projection, the time of flight, the range, and the maximum height.
### Step-by-Step Solution:
#### Given:
- Initial velocity (v) = 250 m/s
- Acceleration due to gravity (g) = 10 m/s²
- The maximum height (H) is one-third of the range (R)
#### i. Angle at which the bullet is fired (θ)
1. Equations of Projectile Motion:
- Maximum height (H):
[tex]\[ H = \frac{v^2 \sin^2(\theta)}{2g} \][/tex]
- Range (R):
[tex]\[ R = \frac{v^2 \sin(2\theta)}{g} \][/tex]
- Given relationship:
[tex]\[ H = \frac{R}{3} \][/tex]
2. Substituting H = R/3 into equation:
[tex]\[ \frac{v^2 \sin^2(\theta)}{2g} = \frac{1}{3} \left( \frac{v^2 \sin(2\theta)}{g} \right) \][/tex]
Simplifying:
[tex]\[ \frac{\sin^2(\theta)}{2} = \frac{\sin(2\theta)}{3} \][/tex]
3. Using the identity [tex]\(\sin(2\theta) = 2 \sin(\theta) \cos(\theta)\)[/tex]:
[tex]\[ \frac{\sin^2(\theta)}{2} = \frac{2 \sin(\theta) \cos(\theta)}{3} \][/tex]
[tex]\[ \frac{\sin(\theta)}{2 \cos(\theta)} = \frac{2}{3} \][/tex]
[tex]\[ \tan(\theta) = \frac{4}{3} \][/tex]
4. Finding θ:
[tex]\[ \theta = \tan^{-1}\left(\frac{4}{3}\right) \approx 41.41^\circ \][/tex]
#### ii. Time of Flight (T)
1. Equation for Time of Flight:
[tex]\[ T = \frac{2v \sin(\theta)}{g} \][/tex]
2. Substitute values:
[tex]\[ T = \frac{2 \times 250 \times \sin(41.41^\circ)}{10} \][/tex]
[tex]\[ T \approx 33.07 \text{ seconds} \][/tex]
#### iii. Range (R)
1. Equation for Range:
[tex]\[ R = \frac{v^2 \sin(2\theta)}{g} \][/tex]
2. Substitute values:
[tex]\[ R = \frac{250^2 \cdot \sin(82.82^\circ)}{10} \][/tex]
[tex]\[ R \approx 6200.98 \text{ meters} \][/tex]
#### iv. Maximum Height (H)
1. Given relationship:
[tex]\[ H = \frac{R}{3} \][/tex]
2. Substitute range value:
[tex]\[ H = \frac{6200.98}{3} \][/tex]
[tex]\[ H \approx 2066.99 \text{ meters} \][/tex]
### Summary of Results:
1. Angle of Projection (θ): [tex]\(41.41^\circ\)[/tex]
2. Time of Flight (T): [tex]\(33.07\)[/tex] seconds
3. Range (R): [tex]\(6200.98\)[/tex] meters
4. Maximum Height (H): [tex]\(2066.99\)[/tex] meters
### Step-by-Step Solution:
#### Given:
- Initial velocity (v) = 250 m/s
- Acceleration due to gravity (g) = 10 m/s²
- The maximum height (H) is one-third of the range (R)
#### i. Angle at which the bullet is fired (θ)
1. Equations of Projectile Motion:
- Maximum height (H):
[tex]\[ H = \frac{v^2 \sin^2(\theta)}{2g} \][/tex]
- Range (R):
[tex]\[ R = \frac{v^2 \sin(2\theta)}{g} \][/tex]
- Given relationship:
[tex]\[ H = \frac{R}{3} \][/tex]
2. Substituting H = R/3 into equation:
[tex]\[ \frac{v^2 \sin^2(\theta)}{2g} = \frac{1}{3} \left( \frac{v^2 \sin(2\theta)}{g} \right) \][/tex]
Simplifying:
[tex]\[ \frac{\sin^2(\theta)}{2} = \frac{\sin(2\theta)}{3} \][/tex]
3. Using the identity [tex]\(\sin(2\theta) = 2 \sin(\theta) \cos(\theta)\)[/tex]:
[tex]\[ \frac{\sin^2(\theta)}{2} = \frac{2 \sin(\theta) \cos(\theta)}{3} \][/tex]
[tex]\[ \frac{\sin(\theta)}{2 \cos(\theta)} = \frac{2}{3} \][/tex]
[tex]\[ \tan(\theta) = \frac{4}{3} \][/tex]
4. Finding θ:
[tex]\[ \theta = \tan^{-1}\left(\frac{4}{3}\right) \approx 41.41^\circ \][/tex]
#### ii. Time of Flight (T)
1. Equation for Time of Flight:
[tex]\[ T = \frac{2v \sin(\theta)}{g} \][/tex]
2. Substitute values:
[tex]\[ T = \frac{2 \times 250 \times \sin(41.41^\circ)}{10} \][/tex]
[tex]\[ T \approx 33.07 \text{ seconds} \][/tex]
#### iii. Range (R)
1. Equation for Range:
[tex]\[ R = \frac{v^2 \sin(2\theta)}{g} \][/tex]
2. Substitute values:
[tex]\[ R = \frac{250^2 \cdot \sin(82.82^\circ)}{10} \][/tex]
[tex]\[ R \approx 6200.98 \text{ meters} \][/tex]
#### iv. Maximum Height (H)
1. Given relationship:
[tex]\[ H = \frac{R}{3} \][/tex]
2. Substitute range value:
[tex]\[ H = \frac{6200.98}{3} \][/tex]
[tex]\[ H \approx 2066.99 \text{ meters} \][/tex]
### Summary of Results:
1. Angle of Projection (θ): [tex]\(41.41^\circ\)[/tex]
2. Time of Flight (T): [tex]\(33.07\)[/tex] seconds
3. Range (R): [tex]\(6200.98\)[/tex] meters
4. Maximum Height (H): [tex]\(2066.99\)[/tex] meters
Thank you for your visit. We are dedicated to helping you find the information you need, whenever you need it. Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. Thank you for trusting Westonci.ca. Don't forget to revisit us for more accurate and insightful answers.