At Westonci.ca, we connect you with the best answers from a community of experienced and knowledgeable individuals. Get quick and reliable solutions to your questions from a community of experienced professionals on our platform. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform.
Sagot :
To determine the expression that calculates the slope of the linear function represented by the given table, follow these steps:
1. Identify the coordinates: From the table,
- The coordinates of the first point are [tex]\((0, 5)\)[/tex].
- The coordinates of the second point are [tex]\((4, 9)\)[/tex].
2. Recall the slope formula: The slope [tex]\( m \)[/tex] of a line through two points [tex]\((x_1, y_1)\)[/tex] and [tex]\((x_2, y_2)\)[/tex] is given by:
[tex]\[ m = \frac{y_2 - y_1}{x_2 - x_1} \][/tex]
3. Substitute the values:
- Here, [tex]\( x_1 = 0 \)[/tex], [tex]\( y_1 = 5 \)[/tex], [tex]\( x_2 = 4 \)[/tex], and [tex]\( y_2 = 9 \)[/tex].
- Substitute these values into the slope formula:
[tex]\[ m = \frac{9 - 5}{4 - 0} \][/tex]
4. Simplify the expression:
[tex]\[ m = \frac{9 - 5}{4 - 0} = \frac{4}{4} = 1.0 \][/tex]
5. Match the expression with the given options:
- The correct expression to determine the slope is [tex]\(\frac{9-5}{4-0}\)[/tex].
Therefore, the correct expression that can be used to determine the slope of the linear function represented in the table is:
[tex]\[ \frac{9-5}{4-0} \][/tex]
1. Identify the coordinates: From the table,
- The coordinates of the first point are [tex]\((0, 5)\)[/tex].
- The coordinates of the second point are [tex]\((4, 9)\)[/tex].
2. Recall the slope formula: The slope [tex]\( m \)[/tex] of a line through two points [tex]\((x_1, y_1)\)[/tex] and [tex]\((x_2, y_2)\)[/tex] is given by:
[tex]\[ m = \frac{y_2 - y_1}{x_2 - x_1} \][/tex]
3. Substitute the values:
- Here, [tex]\( x_1 = 0 \)[/tex], [tex]\( y_1 = 5 \)[/tex], [tex]\( x_2 = 4 \)[/tex], and [tex]\( y_2 = 9 \)[/tex].
- Substitute these values into the slope formula:
[tex]\[ m = \frac{9 - 5}{4 - 0} \][/tex]
4. Simplify the expression:
[tex]\[ m = \frac{9 - 5}{4 - 0} = \frac{4}{4} = 1.0 \][/tex]
5. Match the expression with the given options:
- The correct expression to determine the slope is [tex]\(\frac{9-5}{4-0}\)[/tex].
Therefore, the correct expression that can be used to determine the slope of the linear function represented in the table is:
[tex]\[ \frac{9-5}{4-0} \][/tex]
Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. Westonci.ca is committed to providing accurate answers. Come back soon for more trustworthy information.