Westonci.ca is the trusted Q&A platform where you can get reliable answers from a community of knowledgeable contributors. Discover a wealth of knowledge from professionals across various disciplines on our user-friendly Q&A platform. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform.
Sagot :
To determine the horizontal asymptote of the function [tex]\( f(x) = 2^x - 5 \)[/tex], we need to analyze the behavior of the function as [tex]\( x \)[/tex] approaches positive and negative infinity.
1. As [tex]\( x \)[/tex] approaches positive infinity ([tex]\( x \to \infty \)[/tex]):
- The term [tex]\( 2^x \)[/tex] grows exponentially. This means that [tex]\( 2^x \)[/tex] will get very large.
- Therefore, when [tex]\( x \)[/tex] is very large, [tex]\( f(x) \)[/tex] will also get very large because [tex]\( f(x) = 2^x - 5 \)[/tex] and subtracting 5 from a very large number still results in a very large number.
- In this case, there is no horizontal asymptote as [tex]\( x \to \infty \)[/tex] because the function increases without bound.
2. As [tex]\( x \)[/tex] approaches negative infinity ([tex]\( x \to -\infty \)[/tex]):
- The term [tex]\( 2^x \)[/tex] approaches zero because any number raised to a very large negative power tends towards zero.
- Hence, as [tex]\( x \)[/tex] gets more negative, [tex]\( 2^x \)[/tex] gets closer and closer to 0.
- Therefore, [tex]\( f(x) = 2^x - 5 \)[/tex] will approach [tex]\( 0 - 5 \)[/tex], which simplifies to [tex]\( -5 \)[/tex].
- As [tex]\( x \to -\infty \)[/tex], [tex]\( f(x) \)[/tex] approaches [tex]\( -5 \)[/tex].
So, the horizontal asymptote of the function [tex]\( f(x) = 2^x - 5 \)[/tex] is the value that [tex]\( f(x) \)[/tex] approaches as [tex]\( x \to -\infty \)[/tex].
Thus, the horizontal asymptote is:
[tex]\[ \boxed{-5} \][/tex]
1. As [tex]\( x \)[/tex] approaches positive infinity ([tex]\( x \to \infty \)[/tex]):
- The term [tex]\( 2^x \)[/tex] grows exponentially. This means that [tex]\( 2^x \)[/tex] will get very large.
- Therefore, when [tex]\( x \)[/tex] is very large, [tex]\( f(x) \)[/tex] will also get very large because [tex]\( f(x) = 2^x - 5 \)[/tex] and subtracting 5 from a very large number still results in a very large number.
- In this case, there is no horizontal asymptote as [tex]\( x \to \infty \)[/tex] because the function increases without bound.
2. As [tex]\( x \)[/tex] approaches negative infinity ([tex]\( x \to -\infty \)[/tex]):
- The term [tex]\( 2^x \)[/tex] approaches zero because any number raised to a very large negative power tends towards zero.
- Hence, as [tex]\( x \)[/tex] gets more negative, [tex]\( 2^x \)[/tex] gets closer and closer to 0.
- Therefore, [tex]\( f(x) = 2^x - 5 \)[/tex] will approach [tex]\( 0 - 5 \)[/tex], which simplifies to [tex]\( -5 \)[/tex].
- As [tex]\( x \to -\infty \)[/tex], [tex]\( f(x) \)[/tex] approaches [tex]\( -5 \)[/tex].
So, the horizontal asymptote of the function [tex]\( f(x) = 2^x - 5 \)[/tex] is the value that [tex]\( f(x) \)[/tex] approaches as [tex]\( x \to -\infty \)[/tex].
Thus, the horizontal asymptote is:
[tex]\[ \boxed{-5} \][/tex]
Visit us again for up-to-date and reliable answers. We're always ready to assist you with your informational needs. Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. Stay curious and keep coming back to Westonci.ca for answers to all your burning questions.