At Westonci.ca, we connect you with the answers you need, thanks to our active and informed community. Join our Q&A platform to connect with experts dedicated to providing precise answers to your questions in different areas. Get quick and reliable solutions to your questions from a community of experienced experts on our platform.
Sagot :
To determine the horizontal asymptote of the function [tex]\( f(x) = 2^x - 5 \)[/tex], we need to analyze the behavior of the function as [tex]\( x \)[/tex] approaches positive and negative infinity.
1. As [tex]\( x \)[/tex] approaches positive infinity ([tex]\( x \to \infty \)[/tex]):
- The term [tex]\( 2^x \)[/tex] grows exponentially. This means that [tex]\( 2^x \)[/tex] will get very large.
- Therefore, when [tex]\( x \)[/tex] is very large, [tex]\( f(x) \)[/tex] will also get very large because [tex]\( f(x) = 2^x - 5 \)[/tex] and subtracting 5 from a very large number still results in a very large number.
- In this case, there is no horizontal asymptote as [tex]\( x \to \infty \)[/tex] because the function increases without bound.
2. As [tex]\( x \)[/tex] approaches negative infinity ([tex]\( x \to -\infty \)[/tex]):
- The term [tex]\( 2^x \)[/tex] approaches zero because any number raised to a very large negative power tends towards zero.
- Hence, as [tex]\( x \)[/tex] gets more negative, [tex]\( 2^x \)[/tex] gets closer and closer to 0.
- Therefore, [tex]\( f(x) = 2^x - 5 \)[/tex] will approach [tex]\( 0 - 5 \)[/tex], which simplifies to [tex]\( -5 \)[/tex].
- As [tex]\( x \to -\infty \)[/tex], [tex]\( f(x) \)[/tex] approaches [tex]\( -5 \)[/tex].
So, the horizontal asymptote of the function [tex]\( f(x) = 2^x - 5 \)[/tex] is the value that [tex]\( f(x) \)[/tex] approaches as [tex]\( x \to -\infty \)[/tex].
Thus, the horizontal asymptote is:
[tex]\[ \boxed{-5} \][/tex]
1. As [tex]\( x \)[/tex] approaches positive infinity ([tex]\( x \to \infty \)[/tex]):
- The term [tex]\( 2^x \)[/tex] grows exponentially. This means that [tex]\( 2^x \)[/tex] will get very large.
- Therefore, when [tex]\( x \)[/tex] is very large, [tex]\( f(x) \)[/tex] will also get very large because [tex]\( f(x) = 2^x - 5 \)[/tex] and subtracting 5 from a very large number still results in a very large number.
- In this case, there is no horizontal asymptote as [tex]\( x \to \infty \)[/tex] because the function increases without bound.
2. As [tex]\( x \)[/tex] approaches negative infinity ([tex]\( x \to -\infty \)[/tex]):
- The term [tex]\( 2^x \)[/tex] approaches zero because any number raised to a very large negative power tends towards zero.
- Hence, as [tex]\( x \)[/tex] gets more negative, [tex]\( 2^x \)[/tex] gets closer and closer to 0.
- Therefore, [tex]\( f(x) = 2^x - 5 \)[/tex] will approach [tex]\( 0 - 5 \)[/tex], which simplifies to [tex]\( -5 \)[/tex].
- As [tex]\( x \to -\infty \)[/tex], [tex]\( f(x) \)[/tex] approaches [tex]\( -5 \)[/tex].
So, the horizontal asymptote of the function [tex]\( f(x) = 2^x - 5 \)[/tex] is the value that [tex]\( f(x) \)[/tex] approaches as [tex]\( x \to -\infty \)[/tex].
Thus, the horizontal asymptote is:
[tex]\[ \boxed{-5} \][/tex]
We hope this was helpful. Please come back whenever you need more information or answers to your queries. We hope our answers were useful. Return anytime for more information and answers to any other questions you have. Thank you for choosing Westonci.ca as your information source. We look forward to your next visit.