At Westonci.ca, we connect you with experts who provide detailed answers to your most pressing questions. Start exploring now! Explore in-depth answers to your questions from a knowledgeable community of experts across different fields. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform.
Sagot :
Certainly! Let's carefully examine the given mappings to identify the underlying rule.
We have the following input-output pairs:
[tex]\[ \begin{array}{cccccc} 0 & 1 & 2 & 3 & 4 & 5 \\ \downarrow & \downarrow & \downarrow & \downarrow & \downarrow & \downarrow \\ 2 & 5 & 8 & 11 & 14 & 17 \end{array} \][/tex]
To find the rule, we will analyze the relationship between each input [tex]\( x \)[/tex] and its corresponding output [tex]\( y \)[/tex].
1. Identify the change in mapping:
For [tex]\( x = 0 \)[/tex], [tex]\( y = 2 \)[/tex]
For [tex]\( x = 1 \)[/tex], [tex]\( y = 5 \)[/tex]
For [tex]\( x = 2 \)[/tex], [tex]\( y = 8 \)[/tex]
For [tex]\( x = 3 \)[/tex], [tex]\( y = 11 \)[/tex]
For [tex]\( x = 4 \)[/tex], [tex]\( y = 14 \)[/tex]
For [tex]\( x = 5 \)[/tex], [tex]\( y = 17 \)[/tex]
2. Examine the pattern:
Let's analyze the changes in the output values:
- [tex]\( 5 - 2 = 3 \)[/tex]
- [tex]\( 8 - 5 = 3 \)[/tex]
- [tex]\( 11 - 8 = 3 \)[/tex]
- [tex]\( 14 - 11 = 3 \)[/tex]
- [tex]\( 17 - 14 = 3 \)[/tex]
We see a consistent change of [tex]\( 3 \)[/tex] in the output when the input increases by [tex]\( 1 \)[/tex].
3. Determine the relationship:
Given the pattern, we can hypothesize that the relationship between [tex]\( y \)[/tex] and [tex]\( x \)[/tex] is linear: [tex]\( y = mx + c \)[/tex], where [tex]\( m \)[/tex] is the slope and [tex]\( c \)[/tex] is the y-intercept.
From the pattern above, the slope [tex]\( m \)[/tex] is [tex]\( 3 \)[/tex] because the output increases by 3 for each increase of 1 in the input.
Let's determine the y-intercept [tex]\( c \)[/tex]:
Using the first pair [tex]\((0, 2)\)[/tex]:
[tex]\[ y = 3x + c \][/tex]
[tex]\[ 2 = 3(0) + c \][/tex]
[tex]\[ c = 2 \][/tex]
Thus, the rule is established as:
[tex]\[ y = 3x + 2 \][/tex]
4. Verify the rule:
To ensure our derived rule [tex]\( y = 3x + 2 \)[/tex] is correct, let's apply it to all given input values:
- For [tex]\( x = 0 \)[/tex], [tex]\( y = 3(0) + 2 = 2 \)[/tex]
- For [tex]\( x = 1 \)[/tex], [tex]\( y = 3(1) + 2 = 5 \)[/tex]
- For [tex]\( x = 2 \)[/tex], [tex]\( y = 3(2) + 2 = 8 \)[/tex]
- For [tex]\( x = 3 \)[/tex], [tex]\( y = 3(3) + 2 = 11 \)[/tex]
- For [tex]\( x = 4 \)[/tex], [tex]\( y = 3(4) + 2 = 14 \)[/tex]
- For [tex]\( x = 5 \)[/tex], [tex]\( y = 3(5) + 2 = 17 \)[/tex]
All the values match the given mapping perfectly.
Therefore, the rule for the given mapping is:
[tex]\[ y = 3x + 2 \][/tex]
We have the following input-output pairs:
[tex]\[ \begin{array}{cccccc} 0 & 1 & 2 & 3 & 4 & 5 \\ \downarrow & \downarrow & \downarrow & \downarrow & \downarrow & \downarrow \\ 2 & 5 & 8 & 11 & 14 & 17 \end{array} \][/tex]
To find the rule, we will analyze the relationship between each input [tex]\( x \)[/tex] and its corresponding output [tex]\( y \)[/tex].
1. Identify the change in mapping:
For [tex]\( x = 0 \)[/tex], [tex]\( y = 2 \)[/tex]
For [tex]\( x = 1 \)[/tex], [tex]\( y = 5 \)[/tex]
For [tex]\( x = 2 \)[/tex], [tex]\( y = 8 \)[/tex]
For [tex]\( x = 3 \)[/tex], [tex]\( y = 11 \)[/tex]
For [tex]\( x = 4 \)[/tex], [tex]\( y = 14 \)[/tex]
For [tex]\( x = 5 \)[/tex], [tex]\( y = 17 \)[/tex]
2. Examine the pattern:
Let's analyze the changes in the output values:
- [tex]\( 5 - 2 = 3 \)[/tex]
- [tex]\( 8 - 5 = 3 \)[/tex]
- [tex]\( 11 - 8 = 3 \)[/tex]
- [tex]\( 14 - 11 = 3 \)[/tex]
- [tex]\( 17 - 14 = 3 \)[/tex]
We see a consistent change of [tex]\( 3 \)[/tex] in the output when the input increases by [tex]\( 1 \)[/tex].
3. Determine the relationship:
Given the pattern, we can hypothesize that the relationship between [tex]\( y \)[/tex] and [tex]\( x \)[/tex] is linear: [tex]\( y = mx + c \)[/tex], where [tex]\( m \)[/tex] is the slope and [tex]\( c \)[/tex] is the y-intercept.
From the pattern above, the slope [tex]\( m \)[/tex] is [tex]\( 3 \)[/tex] because the output increases by 3 for each increase of 1 in the input.
Let's determine the y-intercept [tex]\( c \)[/tex]:
Using the first pair [tex]\((0, 2)\)[/tex]:
[tex]\[ y = 3x + c \][/tex]
[tex]\[ 2 = 3(0) + c \][/tex]
[tex]\[ c = 2 \][/tex]
Thus, the rule is established as:
[tex]\[ y = 3x + 2 \][/tex]
4. Verify the rule:
To ensure our derived rule [tex]\( y = 3x + 2 \)[/tex] is correct, let's apply it to all given input values:
- For [tex]\( x = 0 \)[/tex], [tex]\( y = 3(0) + 2 = 2 \)[/tex]
- For [tex]\( x = 1 \)[/tex], [tex]\( y = 3(1) + 2 = 5 \)[/tex]
- For [tex]\( x = 2 \)[/tex], [tex]\( y = 3(2) + 2 = 8 \)[/tex]
- For [tex]\( x = 3 \)[/tex], [tex]\( y = 3(3) + 2 = 11 \)[/tex]
- For [tex]\( x = 4 \)[/tex], [tex]\( y = 3(4) + 2 = 14 \)[/tex]
- For [tex]\( x = 5 \)[/tex], [tex]\( y = 3(5) + 2 = 17 \)[/tex]
All the values match the given mapping perfectly.
Therefore, the rule for the given mapping is:
[tex]\[ y = 3x + 2 \][/tex]
Thanks for stopping by. We are committed to providing the best answers for all your questions. See you again soon. We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. Stay curious and keep coming back to Westonci.ca for answers to all your burning questions.