Find the best answers to your questions at Westonci.ca, where experts and enthusiasts provide accurate, reliable information. Discover precise answers to your questions from a wide range of experts on our user-friendly Q&A platform. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform.
Sagot :
Certainly! Let's carefully examine the given mappings to identify the underlying rule.
We have the following input-output pairs:
[tex]\[ \begin{array}{cccccc} 0 & 1 & 2 & 3 & 4 & 5 \\ \downarrow & \downarrow & \downarrow & \downarrow & \downarrow & \downarrow \\ 2 & 5 & 8 & 11 & 14 & 17 \end{array} \][/tex]
To find the rule, we will analyze the relationship between each input [tex]\( x \)[/tex] and its corresponding output [tex]\( y \)[/tex].
1. Identify the change in mapping:
For [tex]\( x = 0 \)[/tex], [tex]\( y = 2 \)[/tex]
For [tex]\( x = 1 \)[/tex], [tex]\( y = 5 \)[/tex]
For [tex]\( x = 2 \)[/tex], [tex]\( y = 8 \)[/tex]
For [tex]\( x = 3 \)[/tex], [tex]\( y = 11 \)[/tex]
For [tex]\( x = 4 \)[/tex], [tex]\( y = 14 \)[/tex]
For [tex]\( x = 5 \)[/tex], [tex]\( y = 17 \)[/tex]
2. Examine the pattern:
Let's analyze the changes in the output values:
- [tex]\( 5 - 2 = 3 \)[/tex]
- [tex]\( 8 - 5 = 3 \)[/tex]
- [tex]\( 11 - 8 = 3 \)[/tex]
- [tex]\( 14 - 11 = 3 \)[/tex]
- [tex]\( 17 - 14 = 3 \)[/tex]
We see a consistent change of [tex]\( 3 \)[/tex] in the output when the input increases by [tex]\( 1 \)[/tex].
3. Determine the relationship:
Given the pattern, we can hypothesize that the relationship between [tex]\( y \)[/tex] and [tex]\( x \)[/tex] is linear: [tex]\( y = mx + c \)[/tex], where [tex]\( m \)[/tex] is the slope and [tex]\( c \)[/tex] is the y-intercept.
From the pattern above, the slope [tex]\( m \)[/tex] is [tex]\( 3 \)[/tex] because the output increases by 3 for each increase of 1 in the input.
Let's determine the y-intercept [tex]\( c \)[/tex]:
Using the first pair [tex]\((0, 2)\)[/tex]:
[tex]\[ y = 3x + c \][/tex]
[tex]\[ 2 = 3(0) + c \][/tex]
[tex]\[ c = 2 \][/tex]
Thus, the rule is established as:
[tex]\[ y = 3x + 2 \][/tex]
4. Verify the rule:
To ensure our derived rule [tex]\( y = 3x + 2 \)[/tex] is correct, let's apply it to all given input values:
- For [tex]\( x = 0 \)[/tex], [tex]\( y = 3(0) + 2 = 2 \)[/tex]
- For [tex]\( x = 1 \)[/tex], [tex]\( y = 3(1) + 2 = 5 \)[/tex]
- For [tex]\( x = 2 \)[/tex], [tex]\( y = 3(2) + 2 = 8 \)[/tex]
- For [tex]\( x = 3 \)[/tex], [tex]\( y = 3(3) + 2 = 11 \)[/tex]
- For [tex]\( x = 4 \)[/tex], [tex]\( y = 3(4) + 2 = 14 \)[/tex]
- For [tex]\( x = 5 \)[/tex], [tex]\( y = 3(5) + 2 = 17 \)[/tex]
All the values match the given mapping perfectly.
Therefore, the rule for the given mapping is:
[tex]\[ y = 3x + 2 \][/tex]
We have the following input-output pairs:
[tex]\[ \begin{array}{cccccc} 0 & 1 & 2 & 3 & 4 & 5 \\ \downarrow & \downarrow & \downarrow & \downarrow & \downarrow & \downarrow \\ 2 & 5 & 8 & 11 & 14 & 17 \end{array} \][/tex]
To find the rule, we will analyze the relationship between each input [tex]\( x \)[/tex] and its corresponding output [tex]\( y \)[/tex].
1. Identify the change in mapping:
For [tex]\( x = 0 \)[/tex], [tex]\( y = 2 \)[/tex]
For [tex]\( x = 1 \)[/tex], [tex]\( y = 5 \)[/tex]
For [tex]\( x = 2 \)[/tex], [tex]\( y = 8 \)[/tex]
For [tex]\( x = 3 \)[/tex], [tex]\( y = 11 \)[/tex]
For [tex]\( x = 4 \)[/tex], [tex]\( y = 14 \)[/tex]
For [tex]\( x = 5 \)[/tex], [tex]\( y = 17 \)[/tex]
2. Examine the pattern:
Let's analyze the changes in the output values:
- [tex]\( 5 - 2 = 3 \)[/tex]
- [tex]\( 8 - 5 = 3 \)[/tex]
- [tex]\( 11 - 8 = 3 \)[/tex]
- [tex]\( 14 - 11 = 3 \)[/tex]
- [tex]\( 17 - 14 = 3 \)[/tex]
We see a consistent change of [tex]\( 3 \)[/tex] in the output when the input increases by [tex]\( 1 \)[/tex].
3. Determine the relationship:
Given the pattern, we can hypothesize that the relationship between [tex]\( y \)[/tex] and [tex]\( x \)[/tex] is linear: [tex]\( y = mx + c \)[/tex], where [tex]\( m \)[/tex] is the slope and [tex]\( c \)[/tex] is the y-intercept.
From the pattern above, the slope [tex]\( m \)[/tex] is [tex]\( 3 \)[/tex] because the output increases by 3 for each increase of 1 in the input.
Let's determine the y-intercept [tex]\( c \)[/tex]:
Using the first pair [tex]\((0, 2)\)[/tex]:
[tex]\[ y = 3x + c \][/tex]
[tex]\[ 2 = 3(0) + c \][/tex]
[tex]\[ c = 2 \][/tex]
Thus, the rule is established as:
[tex]\[ y = 3x + 2 \][/tex]
4. Verify the rule:
To ensure our derived rule [tex]\( y = 3x + 2 \)[/tex] is correct, let's apply it to all given input values:
- For [tex]\( x = 0 \)[/tex], [tex]\( y = 3(0) + 2 = 2 \)[/tex]
- For [tex]\( x = 1 \)[/tex], [tex]\( y = 3(1) + 2 = 5 \)[/tex]
- For [tex]\( x = 2 \)[/tex], [tex]\( y = 3(2) + 2 = 8 \)[/tex]
- For [tex]\( x = 3 \)[/tex], [tex]\( y = 3(3) + 2 = 11 \)[/tex]
- For [tex]\( x = 4 \)[/tex], [tex]\( y = 3(4) + 2 = 14 \)[/tex]
- For [tex]\( x = 5 \)[/tex], [tex]\( y = 3(5) + 2 = 17 \)[/tex]
All the values match the given mapping perfectly.
Therefore, the rule for the given mapping is:
[tex]\[ y = 3x + 2 \][/tex]
Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. We hope our answers were useful. Return anytime for more information and answers to any other questions you have. Thank you for trusting Westonci.ca. Don't forget to revisit us for more accurate and insightful answers.