Welcome to Westonci.ca, your go-to destination for finding answers to all your questions. Join our expert community today! Discover in-depth answers to your questions from a wide network of experts on our user-friendly Q&A platform. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields.
Sagot :
To determine which statements about the function [tex]\( f(x) = 3(0.95)^x - 5 \)[/tex] are true, let's analyze the function step-by-step.
### Step 1: Identify the Horizontal Asymptote
First, let's consider the long-term behavior of the function as [tex]\( x \)[/tex] approaches infinity. Notice that [tex]\( 0.95 < 1 \)[/tex] and thus [tex]\( (0.95)^x \)[/tex] approaches 0 as [tex]\( x \)[/tex] approaches infinity.
[tex]\[ \lim_{x \to \infty} f(x) = \lim_{x \to \infty} [3(0.95)^x - 5] = 3 \cdot 0 - 5 = -5 \][/tex]
So, the function has a horizontal asymptote at [tex]\( y = -5 \)[/tex].
### Step 2: Check if the Function is Decreasing or Increasing
Let's examine how [tex]\( f(x) = 3(0.95)^x - 5 \)[/tex] behaves as [tex]\( x \)[/tex] increases. The base of the exponent, [tex]\( 0.95 \)[/tex], is less than 1. Therefore, [tex]\( (0.95)^x \)[/tex] is a decreasing function, meaning as [tex]\( x \)[/tex] increases, [tex]\( (0.95)^x \)[/tex] decreases.
- Since [tex]\( f(x) \)[/tex] can be written as a multiple of a decreasing function minus a constant, [tex]\( 3(0.95)^x \)[/tex] is also a decreasing function.
- Subtracting 5 from a decreasing function [tex]\( 3(0.95)^x \)[/tex] doesn't change its monotonicity.
Therefore, [tex]\( f(x) = 3(0.95)^x - 5 \)[/tex] is a decreasing function.
### Step 3: Determine the Range of the Function
Considering [tex]\( f(x) = 3(0.95)^x - 5 \)[/tex], let's analyze the possible outputs.
[tex]\[ \text{If } x \to -\infty, (0.95)^x \to \infty \Rightarrow f(x) \to \infty. \\ \text{If } x \to \infty, (0.95)^x \to 0 \Rightarrow f(x) \to -5. \][/tex]
Hence the range of [tex]\( f(x) \)[/tex] is all values from [tex]\(-5\)[/tex] (approaching, but not including [tex]\(-5\)[/tex]) to [tex]\( \infty \)[/tex].
Thus, the range of the function is [tex]\( (-5, \infty) \)[/tex].
### Conclusion
Given the analysis, we can now match our findings with the provided options:
- The horizontal asymptote is 3. (False)
- The function is decreasing. (True)
- The function is increasing. (False)
- The range is [tex]\( (-5, \infty) \)[/tex]. (True)
- The horizontal asymptote is -5. (True)
- The range is [tex]\( (3, \infty) \)[/tex]. (False)
Therefore, the true statements are:
- The function is decreasing.
- The range is [tex]\( (-5, \infty) \)[/tex].
- The horizontal asymptote is -5.
The indices of these true statements in the given order are:
[tex]\[ \boxed{[1, 3, 4]} \][/tex]
### Step 1: Identify the Horizontal Asymptote
First, let's consider the long-term behavior of the function as [tex]\( x \)[/tex] approaches infinity. Notice that [tex]\( 0.95 < 1 \)[/tex] and thus [tex]\( (0.95)^x \)[/tex] approaches 0 as [tex]\( x \)[/tex] approaches infinity.
[tex]\[ \lim_{x \to \infty} f(x) = \lim_{x \to \infty} [3(0.95)^x - 5] = 3 \cdot 0 - 5 = -5 \][/tex]
So, the function has a horizontal asymptote at [tex]\( y = -5 \)[/tex].
### Step 2: Check if the Function is Decreasing or Increasing
Let's examine how [tex]\( f(x) = 3(0.95)^x - 5 \)[/tex] behaves as [tex]\( x \)[/tex] increases. The base of the exponent, [tex]\( 0.95 \)[/tex], is less than 1. Therefore, [tex]\( (0.95)^x \)[/tex] is a decreasing function, meaning as [tex]\( x \)[/tex] increases, [tex]\( (0.95)^x \)[/tex] decreases.
- Since [tex]\( f(x) \)[/tex] can be written as a multiple of a decreasing function minus a constant, [tex]\( 3(0.95)^x \)[/tex] is also a decreasing function.
- Subtracting 5 from a decreasing function [tex]\( 3(0.95)^x \)[/tex] doesn't change its monotonicity.
Therefore, [tex]\( f(x) = 3(0.95)^x - 5 \)[/tex] is a decreasing function.
### Step 3: Determine the Range of the Function
Considering [tex]\( f(x) = 3(0.95)^x - 5 \)[/tex], let's analyze the possible outputs.
[tex]\[ \text{If } x \to -\infty, (0.95)^x \to \infty \Rightarrow f(x) \to \infty. \\ \text{If } x \to \infty, (0.95)^x \to 0 \Rightarrow f(x) \to -5. \][/tex]
Hence the range of [tex]\( f(x) \)[/tex] is all values from [tex]\(-5\)[/tex] (approaching, but not including [tex]\(-5\)[/tex]) to [tex]\( \infty \)[/tex].
Thus, the range of the function is [tex]\( (-5, \infty) \)[/tex].
### Conclusion
Given the analysis, we can now match our findings with the provided options:
- The horizontal asymptote is 3. (False)
- The function is decreasing. (True)
- The function is increasing. (False)
- The range is [tex]\( (-5, \infty) \)[/tex]. (True)
- The horizontal asymptote is -5. (True)
- The range is [tex]\( (3, \infty) \)[/tex]. (False)
Therefore, the true statements are:
- The function is decreasing.
- The range is [tex]\( (-5, \infty) \)[/tex].
- The horizontal asymptote is -5.
The indices of these true statements in the given order are:
[tex]\[ \boxed{[1, 3, 4]} \][/tex]
We appreciate your visit. Hopefully, the answers you found were beneficial. Don't hesitate to come back for more information. Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. Find reliable answers at Westonci.ca. Visit us again for the latest updates and expert advice.