Westonci.ca connects you with experts who provide insightful answers to your questions. Join us today and start learning! Experience the ease of finding reliable answers to your questions from a vast community of knowledgeable experts. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts.
Sagot :
To determine which statements about the function [tex]\( f(x) = 3(0.95)^x - 5 \)[/tex] are true, let's analyze the function step-by-step.
### Step 1: Identify the Horizontal Asymptote
First, let's consider the long-term behavior of the function as [tex]\( x \)[/tex] approaches infinity. Notice that [tex]\( 0.95 < 1 \)[/tex] and thus [tex]\( (0.95)^x \)[/tex] approaches 0 as [tex]\( x \)[/tex] approaches infinity.
[tex]\[ \lim_{x \to \infty} f(x) = \lim_{x \to \infty} [3(0.95)^x - 5] = 3 \cdot 0 - 5 = -5 \][/tex]
So, the function has a horizontal asymptote at [tex]\( y = -5 \)[/tex].
### Step 2: Check if the Function is Decreasing or Increasing
Let's examine how [tex]\( f(x) = 3(0.95)^x - 5 \)[/tex] behaves as [tex]\( x \)[/tex] increases. The base of the exponent, [tex]\( 0.95 \)[/tex], is less than 1. Therefore, [tex]\( (0.95)^x \)[/tex] is a decreasing function, meaning as [tex]\( x \)[/tex] increases, [tex]\( (0.95)^x \)[/tex] decreases.
- Since [tex]\( f(x) \)[/tex] can be written as a multiple of a decreasing function minus a constant, [tex]\( 3(0.95)^x \)[/tex] is also a decreasing function.
- Subtracting 5 from a decreasing function [tex]\( 3(0.95)^x \)[/tex] doesn't change its monotonicity.
Therefore, [tex]\( f(x) = 3(0.95)^x - 5 \)[/tex] is a decreasing function.
### Step 3: Determine the Range of the Function
Considering [tex]\( f(x) = 3(0.95)^x - 5 \)[/tex], let's analyze the possible outputs.
[tex]\[ \text{If } x \to -\infty, (0.95)^x \to \infty \Rightarrow f(x) \to \infty. \\ \text{If } x \to \infty, (0.95)^x \to 0 \Rightarrow f(x) \to -5. \][/tex]
Hence the range of [tex]\( f(x) \)[/tex] is all values from [tex]\(-5\)[/tex] (approaching, but not including [tex]\(-5\)[/tex]) to [tex]\( \infty \)[/tex].
Thus, the range of the function is [tex]\( (-5, \infty) \)[/tex].
### Conclusion
Given the analysis, we can now match our findings with the provided options:
- The horizontal asymptote is 3. (False)
- The function is decreasing. (True)
- The function is increasing. (False)
- The range is [tex]\( (-5, \infty) \)[/tex]. (True)
- The horizontal asymptote is -5. (True)
- The range is [tex]\( (3, \infty) \)[/tex]. (False)
Therefore, the true statements are:
- The function is decreasing.
- The range is [tex]\( (-5, \infty) \)[/tex].
- The horizontal asymptote is -5.
The indices of these true statements in the given order are:
[tex]\[ \boxed{[1, 3, 4]} \][/tex]
### Step 1: Identify the Horizontal Asymptote
First, let's consider the long-term behavior of the function as [tex]\( x \)[/tex] approaches infinity. Notice that [tex]\( 0.95 < 1 \)[/tex] and thus [tex]\( (0.95)^x \)[/tex] approaches 0 as [tex]\( x \)[/tex] approaches infinity.
[tex]\[ \lim_{x \to \infty} f(x) = \lim_{x \to \infty} [3(0.95)^x - 5] = 3 \cdot 0 - 5 = -5 \][/tex]
So, the function has a horizontal asymptote at [tex]\( y = -5 \)[/tex].
### Step 2: Check if the Function is Decreasing or Increasing
Let's examine how [tex]\( f(x) = 3(0.95)^x - 5 \)[/tex] behaves as [tex]\( x \)[/tex] increases. The base of the exponent, [tex]\( 0.95 \)[/tex], is less than 1. Therefore, [tex]\( (0.95)^x \)[/tex] is a decreasing function, meaning as [tex]\( x \)[/tex] increases, [tex]\( (0.95)^x \)[/tex] decreases.
- Since [tex]\( f(x) \)[/tex] can be written as a multiple of a decreasing function minus a constant, [tex]\( 3(0.95)^x \)[/tex] is also a decreasing function.
- Subtracting 5 from a decreasing function [tex]\( 3(0.95)^x \)[/tex] doesn't change its monotonicity.
Therefore, [tex]\( f(x) = 3(0.95)^x - 5 \)[/tex] is a decreasing function.
### Step 3: Determine the Range of the Function
Considering [tex]\( f(x) = 3(0.95)^x - 5 \)[/tex], let's analyze the possible outputs.
[tex]\[ \text{If } x \to -\infty, (0.95)^x \to \infty \Rightarrow f(x) \to \infty. \\ \text{If } x \to \infty, (0.95)^x \to 0 \Rightarrow f(x) \to -5. \][/tex]
Hence the range of [tex]\( f(x) \)[/tex] is all values from [tex]\(-5\)[/tex] (approaching, but not including [tex]\(-5\)[/tex]) to [tex]\( \infty \)[/tex].
Thus, the range of the function is [tex]\( (-5, \infty) \)[/tex].
### Conclusion
Given the analysis, we can now match our findings with the provided options:
- The horizontal asymptote is 3. (False)
- The function is decreasing. (True)
- The function is increasing. (False)
- The range is [tex]\( (-5, \infty) \)[/tex]. (True)
- The horizontal asymptote is -5. (True)
- The range is [tex]\( (3, \infty) \)[/tex]. (False)
Therefore, the true statements are:
- The function is decreasing.
- The range is [tex]\( (-5, \infty) \)[/tex].
- The horizontal asymptote is -5.
The indices of these true statements in the given order are:
[tex]\[ \boxed{[1, 3, 4]} \][/tex]
Thank you for visiting our platform. We hope you found the answers you were looking for. Come back anytime you need more information. We appreciate your time. Please come back anytime for the latest information and answers to your questions. Discover more at Westonci.ca. Return for the latest expert answers and updates on various topics.