At Westonci.ca, we connect you with experts who provide detailed answers to your most pressing questions. Start exploring now! Explore our Q&A platform to find reliable answers from a wide range of experts in different fields. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts.
Sagot :
Let's go through the process of factoring the trinomial [tex]\(6x^2 - xy - 2y^2\)[/tex] step-by-step.
1. Identify the trinomial: The expression given is [tex]\(6x^2 - xy - 2y^2\)[/tex].
2. Look for a common factor: In this case, there are no common factors among all the terms, so we proceed to factor by grouping or using other techniques.
3. Factoring the trinomial:
- We need to find two binomials that, when multiplied together, give the original trinomial [tex]\(6x^2 - xy - 2y^2\)[/tex].
- Notice we need to find two numbers that multiply to the product of the leading coefficient (6) and the constant term (-2), which is [tex]\(6 \times (-2) = -12\)[/tex], and add up to the middle coefficient (-1).
4. Finding the pairs:
- The pairs that multiply to [tex]\(-12\)[/tex] are: [tex]\( (1, -12), (-1, 12), (2, -6), (-2, 6), (3, -4), (-3, 4) \)[/tex].
- Among these pairs, [tex]\((-3, 4)\)[/tex] adds up to the middle coefficient [tex]\(-1\)[/tex].
5. Rewrite the middle term:
- We rewrite [tex]\(6x^2 - xy - 2y^2\)[/tex] using [tex]\(-3xy + 4xy\)[/tex]:
[tex]\[6x^2 - 3xy + 4xy - 2y^2\][/tex]
6. Group the terms:
- Group the terms to factor by grouping:
[tex]\[6x^2 - 3xy + 4xy - 2y^2 = (6x^2 - 3xy) + (4xy - 2y^2)\][/tex]
7. Factor each group:
- From [tex]\(6x^2 - 3xy\)[/tex], factor out the common term [tex]\(3x\)[/tex]:
[tex]\[3x(2x - y)\][/tex]
- From [tex]\(4xy - 2y^2\)[/tex], factor out the common term [tex]\(2y\)[/tex]:
[tex]\[2y(2x - y)\][/tex]
8. Combine the factors:
- We get:
[tex]\[3x(2x - y) + 2y(2x - y)\][/tex]
- Notice that [tex]\((2x - y)\)[/tex] is a common term:
[tex]\[(3x + 2y)(2x - y)\][/tex]
So, the factored form of the trinomial [tex]\(6x^2 - xy - 2y^2\)[/tex] is:
[tex]\[ 6x^2 - xy - 2y^2 = (3x + 2y)(2x - y) \][/tex]
Therefore, the correct choice is:
[tex]\[ \text{A. } 6x^2 - xy - 2y^2 = (3x + 2y)(2x - y) \][/tex]
1. Identify the trinomial: The expression given is [tex]\(6x^2 - xy - 2y^2\)[/tex].
2. Look for a common factor: In this case, there are no common factors among all the terms, so we proceed to factor by grouping or using other techniques.
3. Factoring the trinomial:
- We need to find two binomials that, when multiplied together, give the original trinomial [tex]\(6x^2 - xy - 2y^2\)[/tex].
- Notice we need to find two numbers that multiply to the product of the leading coefficient (6) and the constant term (-2), which is [tex]\(6 \times (-2) = -12\)[/tex], and add up to the middle coefficient (-1).
4. Finding the pairs:
- The pairs that multiply to [tex]\(-12\)[/tex] are: [tex]\( (1, -12), (-1, 12), (2, -6), (-2, 6), (3, -4), (-3, 4) \)[/tex].
- Among these pairs, [tex]\((-3, 4)\)[/tex] adds up to the middle coefficient [tex]\(-1\)[/tex].
5. Rewrite the middle term:
- We rewrite [tex]\(6x^2 - xy - 2y^2\)[/tex] using [tex]\(-3xy + 4xy\)[/tex]:
[tex]\[6x^2 - 3xy + 4xy - 2y^2\][/tex]
6. Group the terms:
- Group the terms to factor by grouping:
[tex]\[6x^2 - 3xy + 4xy - 2y^2 = (6x^2 - 3xy) + (4xy - 2y^2)\][/tex]
7. Factor each group:
- From [tex]\(6x^2 - 3xy\)[/tex], factor out the common term [tex]\(3x\)[/tex]:
[tex]\[3x(2x - y)\][/tex]
- From [tex]\(4xy - 2y^2\)[/tex], factor out the common term [tex]\(2y\)[/tex]:
[tex]\[2y(2x - y)\][/tex]
8. Combine the factors:
- We get:
[tex]\[3x(2x - y) + 2y(2x - y)\][/tex]
- Notice that [tex]\((2x - y)\)[/tex] is a common term:
[tex]\[(3x + 2y)(2x - y)\][/tex]
So, the factored form of the trinomial [tex]\(6x^2 - xy - 2y^2\)[/tex] is:
[tex]\[ 6x^2 - xy - 2y^2 = (3x + 2y)(2x - y) \][/tex]
Therefore, the correct choice is:
[tex]\[ \text{A. } 6x^2 - xy - 2y^2 = (3x + 2y)(2x - y) \][/tex]
We hope our answers were useful. Return anytime for more information and answers to any other questions you have. Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. Thank you for using Westonci.ca. Come back for more in-depth answers to all your queries.