Get the answers you need at Westonci.ca, where our expert community is always ready to help with accurate information. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform.

Solve the inequality:
[tex]\[ |2x + 4| \ \textgreater \ 16 \][/tex]


Sagot :

Sure, let's solve the inequality [tex]\( |2x + 4| > 16 \)[/tex] step-by-step.

1. Understanding Absolute Value Inequality:
The given inequality is [tex]\( |2x + 4| > 16 \)[/tex]. Absolute value inequalities can be split into two linear inequalities. Specifically, [tex]\( |A| > B \)[/tex] is equivalent to [tex]\( A > B \)[/tex] or [tex]\( A < -B \)[/tex].

2. Setting Up the Inequalities:
Applying this to our inequality [tex]\( |2x + 4| > 16 \)[/tex], we split it into two separate inequalities:
[tex]\[ \begin{cases} 2x + 4 > 16 \\ 2x + 4 < -16 \end{cases} \][/tex]

3. Solving Each Inequality:

- First Inequality: [tex]\( 2x + 4 > 16 \)[/tex]
[tex]\[ 2x + 4 > 16 \][/tex]
Subtract 4 from both sides:
[tex]\[ 2x > 12 \][/tex]
Divide both sides by 2:
[tex]\[ x > 6 \][/tex]
So, one solution is [tex]\( x > 6 \)[/tex].

- Second Inequality: [tex]\( 2x + 4 < -16 \)[/tex]
[tex]\[ 2x + 4 < -16 \][/tex]
Subtract 4 from both sides:
[tex]\[ 2x < -20 \][/tex]
Divide both sides by 2:
[tex]\[ x < -10 \][/tex]
So, another solution is [tex]\( x < -10 \)[/tex].

4. Combining the Solutions:
The solutions to the inequality [tex]\( |2x + 4| > 16 \)[/tex] are the values of [tex]\( x \)[/tex] that satisfy either [tex]\( x > 6 \)[/tex] or [tex]\( x < -10 \)[/tex].

Therefore, the solution to the inequality [tex]\( |2x + 4| > 16 \)[/tex] can be expressed as:
[tex]\[ x > 6 \quad \text{or} \quad x < -10 \][/tex]

In interval notation, the solution is:
[tex]\[ (-\infty, -10) \cup (6, \infty) \][/tex]

This thorough, step-by-step process demonstrates how the solution to the inequality [tex]\( |2x + 4| > 16 \)[/tex] is determined.
Thanks for using our platform. We're always here to provide accurate and up-to-date answers to all your queries. Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. Thank you for visiting Westonci.ca, your go-to source for reliable answers. Come back soon for more expert insights.