Discover a wealth of knowledge at Westonci.ca, where experts provide answers to your most pressing questions. Experience the convenience of finding accurate answers to your questions from knowledgeable professionals on our platform. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform.

Which statements are true of the function [tex]$f(x) = 3(2.5)^x$[/tex]?

Check all that apply:

A. The function is exponential.
B. The base of the exponential function is 3.
C. The base of the exponential function is 2.5.
D. The function has a constant ratio of 2.5 between successive terms.
E. The initial value of the function is 3.
F. The function is increasing for all x.


Sagot :

Let's analyze the function [tex]\( f(x) = 3(2.5)^x \)[/tex] in detail to determine its properties.

1. Is the function increasing?
- To determine if the function is increasing, we look at the derivative [tex]\( f'(x) \)[/tex]. A function is increasing if its derivative is greater than zero for all x. In the given situation, the function [tex]\( 3(2.5)^x \)[/tex] is not strictly increasing.

2. Initial Value:
- To find the initial value, we simply evaluate the function at [tex]\( x = 0 \)[/tex]:
[tex]\[ f(0) = 3(2.5)^0 = 3 \times 1 = 3 \][/tex]
- So, the initial value of the function is [tex]\( 3 \)[/tex].

3. Limit as [tex]\( x \)[/tex] approaches [tex]\( +\infty \)[/tex]:
- We consider the behavior of [tex]\( f(x) \)[/tex] as [tex]\( x \)[/tex] approaches positive infinity. The expression [tex]\( (2.5)^x \)[/tex] grows without bound as [tex]\( x \)[/tex] increases. Hence:
[tex]\[ \lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} 3(2.5)^x = +\infty \][/tex]
- Therefore, the limit of the function as [tex]\( x \)[/tex] approaches positive infinity is [tex]\( \infty \)[/tex].

4. Limit as [tex]\( x \)[/tex] approaches [tex]\( -\infty \)[/tex]:
- For the behavior of [tex]\( f(x) \)[/tex] as [tex]\( x \)[/tex] approaches negative infinity, note that [tex]\( (2.5)^x \)[/tex] tends towards zero since any base greater than one raised to a sufficiently large negative power approaches zero. Thus:
[tex]\[ \lim_{x \to -\infty} f(x) = \lim_{x \to -\infty} 3(2.5)^x = 3 \times 0 = 0 \][/tex]
- Therefore, the limit of the function as [tex]\( x \)[/tex] approaches negative infinity is [tex]\( 0 \)[/tex].

Given these results:

1. The function is not increasing.
2. The initial value of the function [tex]\( f(0) \)[/tex] is [tex]\( 3 \)[/tex].
3. The limit of the function as [tex]\( x \)[/tex] approaches [tex]\( +\infty \)[/tex] is [tex]\( +\infty \)[/tex].
4. The limit of the function as [tex]\( x \)[/tex] approaches [tex]\( -\infty \)[/tex] is [tex]\( 0 \)[/tex].

These results match the true statements about the function [tex]\( f(x) = 3(2.5)^x \)[/tex].