Find the information you're looking for at Westonci.ca, the trusted Q&A platform with a community of knowledgeable experts. Ask your questions and receive accurate answers from professionals with extensive experience in various fields on our platform. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform.

Given the expression:

[tex]\[ \frac{\sqrt{x^2-1} - \frac{1}{2} x \left(x^2-1\right)^{-\frac{1}{2}}}{x^2-1} \][/tex]

Simplify the expression, if possible.


Sagot :

Sure, let's simplify the given mathematical expression:

[tex]\[ \frac{\sqrt{x^2 - 1} - \frac{1}{2} x (x^2 - 1)^{-1/2}}{x^2 - 1} \][/tex]

To simplify this expression step by step, let's break it down:

1. Write Out the Expression More Clearly:

[tex]\[ \frac{\sqrt{x^2 - 1} - \frac{1}{2} x (x^2 - 1)^{-1/2}}{x^2 - 1} \][/tex]

2. Combine the Terms in the Numerator:

In the numerator, we have two terms: [tex]\(\sqrt{x^2 - 1}\)[/tex] and [tex]\(- \frac{1}{2} x (x^2 - 1)^{-1/2}\)[/tex]. Let's write the numerator in a single fraction:

[tex]\[ \sqrt{x^2 - 1} - \frac{1}{2} x (x^2 - 1)^{-1/2} \][/tex]

The numerator is already in its simplest form, so let’s proceed to simplify the entire expression by combining the terms.

3. Rewrite the Numerator:

Notice that [tex]\(\sqrt{x^2 - 1}\)[/tex] is [tex]\( (x^2 - 1)^{1/2} \)[/tex] and [tex]\((x^2 - 1)^{-1/2} \)[/tex] can be written as [tex]\(\frac{1}{(x^2 - 1)^{1/2}}\)[/tex]. So we have:

[tex]\[ (x^2 - 1)^{1/2} - \frac{1}{2} x (x^2 - 1)^{-1/2} \][/tex]

4. Factor Out Common Terms (if possible):

There isn't a straightforward way to factor out common terms in the numerator as they are not directly factorizable.

5. Simplify the Whole Fraction:

We need to simplify the fraction:

[tex]\[ \frac{(x^2 - 1)^{1/2} - 0.5x (x^2 - 1)^{-1/2}}{x^2 - 1} \][/tex]

Notice the term in the denominator [tex]\( x^2 - 1 \)[/tex] can be written as [tex]\( (x^2 - 1) \)[/tex].

6. Rewrite Using Simplified Components:

So the fraction can be expressed as:

[tex]\[ \frac{\sqrt{x^2 - 1} - \frac{1}{2} x \frac{1}{\sqrt{x^2 - 1}}}{x^2 - 1} \][/tex]

Let's rewrite it step by step:

[tex]\[ \text{Numerator: } \sqrt{x^2 - 1} - \frac{1}{2} x (x^2 - 1)^{-1/2} \][/tex]

[tex]\[ = \sqrt{x^2 - 1} - \frac{1}{2} x \cdot \frac{1}{\sqrt{x^2 - 1}} \][/tex]

[tex]\[ = \sqrt{x^2 - 1} - \frac{1}{2} \cdot \frac{x}{\sqrt{x^2 - 1}} \][/tex]

[tex]\[ \text{Combine under a common denominator: } \frac{\sqrt{x^2 - 1} \cdot \sqrt{x^2 - 1} - \frac{1}{2} x}{\sqrt{x^2 - 1}} \][/tex]

7. Express the Entire Fraction Clearly:

Combine the terms together:

[tex]\[ \frac{(x^2 - 1) - 0.5x}{\sqrt{x^2 - 1} \cdot (x^2 - 1)} \][/tex]

Therefore, the final simplified form would be written in terms of the expressions:

[tex]\[ \boxed{\frac{-0.5x + (x^2 - 1)}{(x^2 - 1)^{1.5}}} \][/tex]

So, the given expression simplifies to:

[tex]\[ \boxed{\frac{-0.5x + (x^2 - 1)^{1.0}}{(x^2 - 1)^{1.5}}} \][/tex]
We appreciate your visit. Hopefully, the answers you found were beneficial. Don't hesitate to come back for more information. We hope this was helpful. Please come back whenever you need more information or answers to your queries. Keep exploring Westonci.ca for more insightful answers to your questions. We're here to help.