Get the answers you need at Westonci.ca, where our expert community is always ready to help with accurate information. Ask your questions and receive precise answers from experienced professionals across different disciplines. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently.
Sagot :
Okay, let's find the product [tex]\(\left(4 p^3 s^2-4 p^2 s^3\right)\left(3 p^2 s^2+5 p^5 s\right)\)[/tex].
Here is the step-by-step solution:
1. Distribute each term in the first polynomial to each term in the second polynomial.
This means we will expand by multiplying each term in [tex]\((4 p^3 s^2 - 4 p^2 s^3)\)[/tex] by each term in [tex]\((3 p^2 s^2 + 5 p^5 s)\)[/tex].
2. Multiply [tex]\(4 p^3 s^2\)[/tex] by each term in the second polynomial:
- [tex]\(4 p^3 s^2 \cdot 3 p^2 s^2 = 4 \cdot 3 \cdot p^{3+2} \cdot s^{2+2} = 12 p^5 s^4\)[/tex]
- [tex]\(4 p^3 s^2 \cdot 5 p^5 s = 4 \cdot 5 \cdot p^{3+5} \cdot s^{2+1} = 20 p^8 s^3\)[/tex]
3. Multiply [tex]\(-4 p^2 s^3\)[/tex] by each term in the second polynomial:
- [tex]\(-4 p^2 s^3 \cdot 3 p^2 s^2 = -4 \cdot 3 \cdot p^{2+2} \cdot s^{3+2} = -12 p^4 s^5\)[/tex]
- [tex]\(-4 p^2 s^3 \cdot 5 p^5 s = -4 \cdot 5 \cdot p^{2+5} \cdot s^{3+1} = -20 p^7 s^4\)[/tex]
4. Combine all the terms we obtained:
- [tex]\(12 p^5 s^4\)[/tex]
- [tex]\(20 p^8 s^3\)[/tex]
- [tex]\(-12 p^4 s^5\)[/tex]
- [tex]\(-20 p^7 s^4\)[/tex]
5. Write the final expression by putting together all the terms:
So, the product of [tex]\((4 p^3 s^2 - 4 p^2 s^3)\)[/tex] and [tex]\((3 p^2 s^2 + 5 p^5 s)\)[/tex] is:
[tex]\[ 20 p^8 s^3 - 20 p^7 s^4 + 12 p^5 s^4 - 12 p^4 s^5 \][/tex]
This is the expanded form of the given expressions.
Here is the step-by-step solution:
1. Distribute each term in the first polynomial to each term in the second polynomial.
This means we will expand by multiplying each term in [tex]\((4 p^3 s^2 - 4 p^2 s^3)\)[/tex] by each term in [tex]\((3 p^2 s^2 + 5 p^5 s)\)[/tex].
2. Multiply [tex]\(4 p^3 s^2\)[/tex] by each term in the second polynomial:
- [tex]\(4 p^3 s^2 \cdot 3 p^2 s^2 = 4 \cdot 3 \cdot p^{3+2} \cdot s^{2+2} = 12 p^5 s^4\)[/tex]
- [tex]\(4 p^3 s^2 \cdot 5 p^5 s = 4 \cdot 5 \cdot p^{3+5} \cdot s^{2+1} = 20 p^8 s^3\)[/tex]
3. Multiply [tex]\(-4 p^2 s^3\)[/tex] by each term in the second polynomial:
- [tex]\(-4 p^2 s^3 \cdot 3 p^2 s^2 = -4 \cdot 3 \cdot p^{2+2} \cdot s^{3+2} = -12 p^4 s^5\)[/tex]
- [tex]\(-4 p^2 s^3 \cdot 5 p^5 s = -4 \cdot 5 \cdot p^{2+5} \cdot s^{3+1} = -20 p^7 s^4\)[/tex]
4. Combine all the terms we obtained:
- [tex]\(12 p^5 s^4\)[/tex]
- [tex]\(20 p^8 s^3\)[/tex]
- [tex]\(-12 p^4 s^5\)[/tex]
- [tex]\(-20 p^7 s^4\)[/tex]
5. Write the final expression by putting together all the terms:
So, the product of [tex]\((4 p^3 s^2 - 4 p^2 s^3)\)[/tex] and [tex]\((3 p^2 s^2 + 5 p^5 s)\)[/tex] is:
[tex]\[ 20 p^8 s^3 - 20 p^7 s^4 + 12 p^5 s^4 - 12 p^4 s^5 \][/tex]
This is the expanded form of the given expressions.
Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. We're glad you chose Westonci.ca. Revisit us for updated answers from our knowledgeable team.