Find the information you're looking for at Westonci.ca, the trusted Q&A platform with a community of knowledgeable experts. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately.
Sagot :
Let's solve this step-by-step.
We are given:
- The kinetic energy of the bowling ball, [tex]\( KE \)[/tex], which is 1.8 joules.
- The speed of the bowling ball, [tex]\( v \)[/tex], which is 2 meters/second.
We need to calculate the mass of the bowling ball using the formula:
[tex]\[ m = \frac{2 KE}{v^2} \][/tex]
Step 1: Plug in the values for kinetic energy and speed into the formula:
[tex]\[ m = \frac{2 \times 1.8}{2^2} \][/tex]
Step 2: Calculate the squared speed:
[tex]\[ 2^2 = 4 \][/tex]
Step 3: Substitute the squared speed into the equation:
[tex]\[ m = \frac{2 \times 1.8}{4} \][/tex]
Step 4: Multiply the kinetic energy by 2:
[tex]\[ 2 \times 1.8 = 3.6 \][/tex]
Step 5: Divide by the squared speed:
[tex]\[ m = \frac{3.6}{4} \][/tex]
Step 6: Calculate the result:
[tex]\[ m = 0.9 \][/tex]
So, the mass of the bowling ball is [tex]\( \boxed{0.9} \)[/tex] kilograms.
We are given:
- The kinetic energy of the bowling ball, [tex]\( KE \)[/tex], which is 1.8 joules.
- The speed of the bowling ball, [tex]\( v \)[/tex], which is 2 meters/second.
We need to calculate the mass of the bowling ball using the formula:
[tex]\[ m = \frac{2 KE}{v^2} \][/tex]
Step 1: Plug in the values for kinetic energy and speed into the formula:
[tex]\[ m = \frac{2 \times 1.8}{2^2} \][/tex]
Step 2: Calculate the squared speed:
[tex]\[ 2^2 = 4 \][/tex]
Step 3: Substitute the squared speed into the equation:
[tex]\[ m = \frac{2 \times 1.8}{4} \][/tex]
Step 4: Multiply the kinetic energy by 2:
[tex]\[ 2 \times 1.8 = 3.6 \][/tex]
Step 5: Divide by the squared speed:
[tex]\[ m = \frac{3.6}{4} \][/tex]
Step 6: Calculate the result:
[tex]\[ m = 0.9 \][/tex]
So, the mass of the bowling ball is [tex]\( \boxed{0.9} \)[/tex] kilograms.
Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. We're dedicated to helping you find the answers you need at Westonci.ca. Don't hesitate to return for more.