At Westonci.ca, we provide reliable answers to your questions from a community of experts. Start exploring today! Discover precise answers to your questions from a wide range of experts on our user-friendly Q&A platform. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform.

Find the point that is symmetric to the point [tex]\((7, -2)\)[/tex] with respect to:

A. the x-axis
B. the y-axis
C. the origin


Sagot :

To solve this problem, we need to find three different symmetric points relative to the given point [tex]\((7, -2)\)[/tex] based on the specified axes.

### 1. Symmetry with respect to the x-axis

When finding the symmetric point with respect to the x-axis, we reflect the point over the x-axis. This involves changing the sign of the y-coordinate while keeping the x-coordinate the same.

Given point: [tex]\((7, -2)\)[/tex]

To find the symmetric point:
- Keep the x-coordinate as 7
- Change the sign of the y-coordinate: [tex]\(-2\)[/tex] becomes [tex]\(2\)[/tex]

Thus, the symmetric point with respect to the x-axis is [tex]\((7, 2)\)[/tex].

### 2. Symmetry with respect to the y-axis

When finding the symmetric point with respect to the y-axis, we reflect the point over the y-axis. This involves changing the sign of the x-coordinate while keeping the y-coordinate the same.

Given point: [tex]\((7, -2)\)[/tex]

To find the symmetric point:
- Change the sign of the x-coordinate: [tex]\(7\)[/tex] becomes [tex]\(-7\)[/tex]
- Keep the y-coordinate as [tex]\(-2\)[/tex]

Thus, the symmetric point with respect to the y-axis is [tex]\((-7, -2)\)[/tex].

### 3. Symmetry with respect to the origin

When finding the symmetric point with respect to the origin, we reflect the point over the origin. This involves changing the signs of both the x-coordinate and the y-coordinate.

Given point: [tex]\((7, -2)\)[/tex]

To find the symmetric point:
- Change the sign of the x-coordinate: [tex]\(7\)[/tex] becomes [tex]\(-7\)[/tex]
- Change the sign of the y-coordinate: [tex]\(-2\)[/tex] becomes [tex]\(2\)[/tex]

Thus, the symmetric point with respect to the origin is [tex]\((-7, 2)\)[/tex].

### Summary

The symmetric points are:
- With respect to the x-axis: [tex]\((7, 2)\)[/tex]
- With respect to the y-axis: [tex]\((-7, -2)\)[/tex]
- With respect to the origin: [tex]\((-7, 2)\)[/tex]

These points provide the required reflections of the point [tex]\((7, -2)\)[/tex] relative to the specified axes.
We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. We appreciate your time. Please revisit us for more reliable answers to any questions you may have. Find reliable answers at Westonci.ca. Visit us again for the latest updates and expert advice.