Welcome to Westonci.ca, where your questions are met with accurate answers from a community of experts and enthusiasts. Explore our Q&A platform to find in-depth answers from a wide range of experts in different fields. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform.
Sagot :
To solve the problem of finding the probabilities associated with the given data table, let's carefully analyze the information provided. Here's a structured approach to the solution:
1. Total number of respondents: According to the table, the total number of respondents in each category is given in the last row.
- [tex]$Total = 80 + 170 + 250 = 500$[/tex]
2. Probability of a randomly selected person identifying as Liberal:
- The number of respondents identifying as Liberal from the given data:
- [tex]$Liberal = 80$[/tex]
- Therefore, the probability of a randomly selected person identifying as Liberal is:
[tex]\[ P(\text{Liberal}) = \frac{\text{Number of Liberals}}{\text{Total number of respondents}} = \frac{80}{500} \][/tex]
- Simplifying the fraction:
[tex]\[ P(\text{Liberal}) = \frac{80}{500} = \frac{8}{50} = \frac{4}{25} \][/tex]
3. Probability of a randomly selected person identifying as Liberal and holding a College Degree:
- The number of respondents identifying as Liberal and holding a College Degree should be provided directly or computed by dividing:
- [tex]$Liberal \land \text{College Degree} = 42$[/tex] (as per problem statement, not from the given data)
- Therefore, the probability is:
[tex]\[ P(\text{Liberal} \land \text{College Degree}) = \frac{\text{Number of Liberals with College Degree}}{\text{Total number of respondents}} = \frac{42}{500} \][/tex]
- Simplifying the fraction:
[tex]\[ P(\text{Liberal} \land \text{College Degree}) = \frac{42}{500} = \frac{21}{250} \][/tex]
4. Probability of a randomly selected person identifying as Liberal, or identifying as Mixed, or identifying as Conservative:
- Since these are all the categories provided, and they cover the complete set of respondents, we can infer:
[tex]\[ P(\text{Liberal} \lor \text{Mixed} \lor \text{Conservative}) = 1 \][/tex]
With this detailed explanation, we now have matching probabilities.
- Probability of a randomly selected person identifying as Liberal: [tex]$\frac{4}{25}$[/tex]
- Probability of a randomly selected person identifying as Liberal and holding a College Degree: [tex]$\frac{42}{250}$[/tex]
1. Total number of respondents: According to the table, the total number of respondents in each category is given in the last row.
- [tex]$Total = 80 + 170 + 250 = 500$[/tex]
2. Probability of a randomly selected person identifying as Liberal:
- The number of respondents identifying as Liberal from the given data:
- [tex]$Liberal = 80$[/tex]
- Therefore, the probability of a randomly selected person identifying as Liberal is:
[tex]\[ P(\text{Liberal}) = \frac{\text{Number of Liberals}}{\text{Total number of respondents}} = \frac{80}{500} \][/tex]
- Simplifying the fraction:
[tex]\[ P(\text{Liberal}) = \frac{80}{500} = \frac{8}{50} = \frac{4}{25} \][/tex]
3. Probability of a randomly selected person identifying as Liberal and holding a College Degree:
- The number of respondents identifying as Liberal and holding a College Degree should be provided directly or computed by dividing:
- [tex]$Liberal \land \text{College Degree} = 42$[/tex] (as per problem statement, not from the given data)
- Therefore, the probability is:
[tex]\[ P(\text{Liberal} \land \text{College Degree}) = \frac{\text{Number of Liberals with College Degree}}{\text{Total number of respondents}} = \frac{42}{500} \][/tex]
- Simplifying the fraction:
[tex]\[ P(\text{Liberal} \land \text{College Degree}) = \frac{42}{500} = \frac{21}{250} \][/tex]
4. Probability of a randomly selected person identifying as Liberal, or identifying as Mixed, or identifying as Conservative:
- Since these are all the categories provided, and they cover the complete set of respondents, we can infer:
[tex]\[ P(\text{Liberal} \lor \text{Mixed} \lor \text{Conservative}) = 1 \][/tex]
With this detailed explanation, we now have matching probabilities.
- Probability of a randomly selected person identifying as Liberal: [tex]$\frac{4}{25}$[/tex]
- Probability of a randomly selected person identifying as Liberal and holding a College Degree: [tex]$\frac{42}{250}$[/tex]
Thanks for using our service. We aim to provide the most accurate answers for all your queries. Visit us again for more insights. We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Thank you for choosing Westonci.ca as your information source. We look forward to your next visit.