Discover the answers you need at Westonci.ca, where experts provide clear and concise information on various topics. Experience the convenience of getting accurate answers to your questions from a dedicated community of professionals. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform.
Sagot :
To add the given polynomials, we will combine the coefficients of terms with the same power of [tex]\(a\)[/tex]. Let's go through it step-by-step:
1. Identify the terms in each polynomial:
The first polynomial is:
[tex]\[ 9.7a^4 + 1 \][/tex]
The second polynomial is:
[tex]\[ -6.1a^4 - 7.3a^2 + 9.8 \][/tex]
2. Group the like terms:
We have terms involving [tex]\(a^4\)[/tex], [tex]\(a^2\)[/tex], and the constant terms (which are terms with [tex]\(a^0\)[/tex]).
- For [tex]\(a^4\)[/tex]:
[tex]\[ 9.7a^4 \text{ and } -6.1a^4 \][/tex]
- For [tex]\(a^2\)[/tex]:
[tex]\[ -7.3a^2 \text{ (from the second polynomial, there is no corresponding \(a^2\) term in the first polynomial)} \][/tex]
- Constant terms (terms with [tex]\(a^0\)[/tex]):
[tex]\[ 1 \text{ and } 9.8 \][/tex]
3. Add the coefficients of the like terms:
- Coefficient of [tex]\(a^4\)[/tex]:
[tex]\[ 9.7 + (-6.1) = 9.7 - 6.1 = 3.6 \][/tex]
- Coefficient of [tex]\(a^2\)[/tex]:
[tex]\[ -7.3 \text{ (no additional term to combine with)} \][/tex]
- Constant terms:
[tex]\[ 1 + 9.8 = 10.8 \][/tex]
4. Combine these results to form the new polynomial:
The resulting polynomial after combining the like terms is:
[tex]\[ 3.6a^4 - 7.3a^2 + 10.8 \][/tex]
Thus, the final sum of the polynomials [tex]\(\left(9.7a^4 + 1\right) + \left(-6.1a^4 - 7.3a^2 + 9.8\right)\)[/tex] is:
[tex]\[ 3.6a^4 - 7.3a^2 + 10.8 \][/tex]
1. Identify the terms in each polynomial:
The first polynomial is:
[tex]\[ 9.7a^4 + 1 \][/tex]
The second polynomial is:
[tex]\[ -6.1a^4 - 7.3a^2 + 9.8 \][/tex]
2. Group the like terms:
We have terms involving [tex]\(a^4\)[/tex], [tex]\(a^2\)[/tex], and the constant terms (which are terms with [tex]\(a^0\)[/tex]).
- For [tex]\(a^4\)[/tex]:
[tex]\[ 9.7a^4 \text{ and } -6.1a^4 \][/tex]
- For [tex]\(a^2\)[/tex]:
[tex]\[ -7.3a^2 \text{ (from the second polynomial, there is no corresponding \(a^2\) term in the first polynomial)} \][/tex]
- Constant terms (terms with [tex]\(a^0\)[/tex]):
[tex]\[ 1 \text{ and } 9.8 \][/tex]
3. Add the coefficients of the like terms:
- Coefficient of [tex]\(a^4\)[/tex]:
[tex]\[ 9.7 + (-6.1) = 9.7 - 6.1 = 3.6 \][/tex]
- Coefficient of [tex]\(a^2\)[/tex]:
[tex]\[ -7.3 \text{ (no additional term to combine with)} \][/tex]
- Constant terms:
[tex]\[ 1 + 9.8 = 10.8 \][/tex]
4. Combine these results to form the new polynomial:
The resulting polynomial after combining the like terms is:
[tex]\[ 3.6a^4 - 7.3a^2 + 10.8 \][/tex]
Thus, the final sum of the polynomials [tex]\(\left(9.7a^4 + 1\right) + \left(-6.1a^4 - 7.3a^2 + 9.8\right)\)[/tex] is:
[tex]\[ 3.6a^4 - 7.3a^2 + 10.8 \][/tex]
Thanks for using our platform. We're always here to provide accurate and up-to-date answers to all your queries. Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. Westonci.ca is your go-to source for reliable answers. Return soon for more expert insights.