Discover a wealth of knowledge at Westonci.ca, where experts provide answers to your most pressing questions. Join our Q&A platform and connect with professionals ready to provide precise answers to your questions in various areas. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform.
Sagot :
To determine the most restrictive level of significance for the hypothesis test, we need to conduct a one-sample z-test comparing the sample mean to the population mean. Here are the detailed steps to arrive at the solution:
1. State the Hypotheses:
- Null hypothesis ([tex]\(H_0\)[/tex]): The true mean volume is 300 mL.
- Alternative hypothesis ([tex]\(H_1\)[/tex]): The true mean volume is less than 300 mL.
2. Given Data:
- Sample size ([tex]\(n\)[/tex]): 20
- Sample mean ([tex]\(\bar{x}\)[/tex]): 298.4 mL
- Population mean ([tex]\(\mu\)[/tex]): 300 mL
- Population standard deviation ([tex]\(\sigma\)[/tex]): 3 mL
3. Calculate the z-score:
The z-score formula for a sample mean in hypothesis testing is:
[tex]\[ z = \frac{\bar{x} - \mu}{\frac{\sigma}{\sqrt{n}}} \][/tex]
Substituting the given values:
[tex]\[ z = \frac{298.4 - 300}{\frac{3}{\sqrt{20}}} \approx -2.3851 \][/tex]
4. Determine the Critical z-values for Given Significance Levels:
The table provides the following critical z-values for upper-tail (one-tailed) tests:
- [tex]\(5\%\)[/tex] significance level: [tex]\(1.65\)[/tex]
- [tex]\(2.5\%\)[/tex] significance level: [tex]\(1.96\)[/tex]
- [tex]\(1\%\)[/tex] significance level: [tex]\(2.58\)[/tex]
5. Compare the Calculated z-score to the Critical z-values:
Since we are performing a left-tail test (sample mean < population mean), we consider the negative critical z-values:
- For [tex]\(5\%\)[/tex], the critical z-value is [tex]\(-1.65\)[/tex]
- For [tex]\(2.5\%\)[/tex], the critical z-value is [tex]\(-1.96\)[/tex]
- For [tex]\(1\%\)[/tex], the critical z-value is [tex]\(-2.58\)[/tex]
6. Determine the Most Restrictive Significance Level:
- The calculated z-score is approximately [tex]\(-2.3851\)[/tex].
- This z-score is lower than [tex]\(-1.96\)[/tex] but higher than [tex]\(-2.58\)[/tex]. This means it falls between the critical z-values for [tex]\(2.5\%\)[/tex] and [tex]\(1\%\)[/tex] significance levels.
Therefore, the most restrictive level of significance where the null hypothesis is rejected (indicating the company is packaging less than 300 mL on average) is [tex]\(2.5\%\)[/tex].
Hence, the answer is:
[tex]\[ \boxed{2.5\%} \][/tex]
1. State the Hypotheses:
- Null hypothesis ([tex]\(H_0\)[/tex]): The true mean volume is 300 mL.
- Alternative hypothesis ([tex]\(H_1\)[/tex]): The true mean volume is less than 300 mL.
2. Given Data:
- Sample size ([tex]\(n\)[/tex]): 20
- Sample mean ([tex]\(\bar{x}\)[/tex]): 298.4 mL
- Population mean ([tex]\(\mu\)[/tex]): 300 mL
- Population standard deviation ([tex]\(\sigma\)[/tex]): 3 mL
3. Calculate the z-score:
The z-score formula for a sample mean in hypothesis testing is:
[tex]\[ z = \frac{\bar{x} - \mu}{\frac{\sigma}{\sqrt{n}}} \][/tex]
Substituting the given values:
[tex]\[ z = \frac{298.4 - 300}{\frac{3}{\sqrt{20}}} \approx -2.3851 \][/tex]
4. Determine the Critical z-values for Given Significance Levels:
The table provides the following critical z-values for upper-tail (one-tailed) tests:
- [tex]\(5\%\)[/tex] significance level: [tex]\(1.65\)[/tex]
- [tex]\(2.5\%\)[/tex] significance level: [tex]\(1.96\)[/tex]
- [tex]\(1\%\)[/tex] significance level: [tex]\(2.58\)[/tex]
5. Compare the Calculated z-score to the Critical z-values:
Since we are performing a left-tail test (sample mean < population mean), we consider the negative critical z-values:
- For [tex]\(5\%\)[/tex], the critical z-value is [tex]\(-1.65\)[/tex]
- For [tex]\(2.5\%\)[/tex], the critical z-value is [tex]\(-1.96\)[/tex]
- For [tex]\(1\%\)[/tex], the critical z-value is [tex]\(-2.58\)[/tex]
6. Determine the Most Restrictive Significance Level:
- The calculated z-score is approximately [tex]\(-2.3851\)[/tex].
- This z-score is lower than [tex]\(-1.96\)[/tex] but higher than [tex]\(-2.58\)[/tex]. This means it falls between the critical z-values for [tex]\(2.5\%\)[/tex] and [tex]\(1\%\)[/tex] significance levels.
Therefore, the most restrictive level of significance where the null hypothesis is rejected (indicating the company is packaging less than 300 mL on average) is [tex]\(2.5\%\)[/tex].
Hence, the answer is:
[tex]\[ \boxed{2.5\%} \][/tex]
Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. Thank you for trusting Westonci.ca. Don't forget to revisit us for more accurate and insightful answers.