At Westonci.ca, we make it easy to get the answers you need from a community of informed and experienced contributors. Our platform provides a seamless experience for finding precise answers from a network of experienced professionals. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields.
Sagot :
To determine the most restrictive level of significance for the hypothesis test, we need to conduct a one-sample z-test comparing the sample mean to the population mean. Here are the detailed steps to arrive at the solution:
1. State the Hypotheses:
- Null hypothesis ([tex]\(H_0\)[/tex]): The true mean volume is 300 mL.
- Alternative hypothesis ([tex]\(H_1\)[/tex]): The true mean volume is less than 300 mL.
2. Given Data:
- Sample size ([tex]\(n\)[/tex]): 20
- Sample mean ([tex]\(\bar{x}\)[/tex]): 298.4 mL
- Population mean ([tex]\(\mu\)[/tex]): 300 mL
- Population standard deviation ([tex]\(\sigma\)[/tex]): 3 mL
3. Calculate the z-score:
The z-score formula for a sample mean in hypothesis testing is:
[tex]\[ z = \frac{\bar{x} - \mu}{\frac{\sigma}{\sqrt{n}}} \][/tex]
Substituting the given values:
[tex]\[ z = \frac{298.4 - 300}{\frac{3}{\sqrt{20}}} \approx -2.3851 \][/tex]
4. Determine the Critical z-values for Given Significance Levels:
The table provides the following critical z-values for upper-tail (one-tailed) tests:
- [tex]\(5\%\)[/tex] significance level: [tex]\(1.65\)[/tex]
- [tex]\(2.5\%\)[/tex] significance level: [tex]\(1.96\)[/tex]
- [tex]\(1\%\)[/tex] significance level: [tex]\(2.58\)[/tex]
5. Compare the Calculated z-score to the Critical z-values:
Since we are performing a left-tail test (sample mean < population mean), we consider the negative critical z-values:
- For [tex]\(5\%\)[/tex], the critical z-value is [tex]\(-1.65\)[/tex]
- For [tex]\(2.5\%\)[/tex], the critical z-value is [tex]\(-1.96\)[/tex]
- For [tex]\(1\%\)[/tex], the critical z-value is [tex]\(-2.58\)[/tex]
6. Determine the Most Restrictive Significance Level:
- The calculated z-score is approximately [tex]\(-2.3851\)[/tex].
- This z-score is lower than [tex]\(-1.96\)[/tex] but higher than [tex]\(-2.58\)[/tex]. This means it falls between the critical z-values for [tex]\(2.5\%\)[/tex] and [tex]\(1\%\)[/tex] significance levels.
Therefore, the most restrictive level of significance where the null hypothesis is rejected (indicating the company is packaging less than 300 mL on average) is [tex]\(2.5\%\)[/tex].
Hence, the answer is:
[tex]\[ \boxed{2.5\%} \][/tex]
1. State the Hypotheses:
- Null hypothesis ([tex]\(H_0\)[/tex]): The true mean volume is 300 mL.
- Alternative hypothesis ([tex]\(H_1\)[/tex]): The true mean volume is less than 300 mL.
2. Given Data:
- Sample size ([tex]\(n\)[/tex]): 20
- Sample mean ([tex]\(\bar{x}\)[/tex]): 298.4 mL
- Population mean ([tex]\(\mu\)[/tex]): 300 mL
- Population standard deviation ([tex]\(\sigma\)[/tex]): 3 mL
3. Calculate the z-score:
The z-score formula for a sample mean in hypothesis testing is:
[tex]\[ z = \frac{\bar{x} - \mu}{\frac{\sigma}{\sqrt{n}}} \][/tex]
Substituting the given values:
[tex]\[ z = \frac{298.4 - 300}{\frac{3}{\sqrt{20}}} \approx -2.3851 \][/tex]
4. Determine the Critical z-values for Given Significance Levels:
The table provides the following critical z-values for upper-tail (one-tailed) tests:
- [tex]\(5\%\)[/tex] significance level: [tex]\(1.65\)[/tex]
- [tex]\(2.5\%\)[/tex] significance level: [tex]\(1.96\)[/tex]
- [tex]\(1\%\)[/tex] significance level: [tex]\(2.58\)[/tex]
5. Compare the Calculated z-score to the Critical z-values:
Since we are performing a left-tail test (sample mean < population mean), we consider the negative critical z-values:
- For [tex]\(5\%\)[/tex], the critical z-value is [tex]\(-1.65\)[/tex]
- For [tex]\(2.5\%\)[/tex], the critical z-value is [tex]\(-1.96\)[/tex]
- For [tex]\(1\%\)[/tex], the critical z-value is [tex]\(-2.58\)[/tex]
6. Determine the Most Restrictive Significance Level:
- The calculated z-score is approximately [tex]\(-2.3851\)[/tex].
- This z-score is lower than [tex]\(-1.96\)[/tex] but higher than [tex]\(-2.58\)[/tex]. This means it falls between the critical z-values for [tex]\(2.5\%\)[/tex] and [tex]\(1\%\)[/tex] significance levels.
Therefore, the most restrictive level of significance where the null hypothesis is rejected (indicating the company is packaging less than 300 mL on average) is [tex]\(2.5\%\)[/tex].
Hence, the answer is:
[tex]\[ \boxed{2.5\%} \][/tex]
Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. Thank you for choosing Westonci.ca as your information source. We look forward to your next visit.