Explore Westonci.ca, the premier Q&A site that helps you find precise answers to your questions, no matter the topic. Ask your questions and receive accurate answers from professionals with extensive experience in various fields on our platform. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals.
Sagot :
Certainly! Let's go through each part of the question in detail.
### Part 6a:
#### i) Uniform Motion:
Uniform motion refers to motion at a constant velocity, which means there is no acceleration. The graph of velocity versus time for uniform motion is a horizontal straight line.
Sketch:
```
v (m/s)
| _______
| |
| |
| |
|______|____________________ t (s)
```
#### ii) Uniform Acceleration:
Uniform acceleration refers to motion where the velocity increases linearly over time. This implies a constant rate of change of velocity, and the graph of velocity versus time is a straight line with a positive slope.
Sketch:
```
v (m/s)
|
|
|
|
| /
| /
|/__________________________ t (s)
```
### Part 6b:
The table provided shows the velocity of a car at different times:
```
\begin{tabular}{|l|l|l|l|l|l|l|}
\hline Timels & 2.0 & 4.0 & 6.0 & 8.0 & 10.0 & 12.0 \\
\hline V/mos -1 & 25.0 & 45.0 & 65.0 & 75.0 & 75.0 & 75.0 \\
\hline
\end{tabular}
```
#### Part i) Plot the velocity-time graph:
To plot the velocity-time graph, you can use the points provided:
Velocity-Time Graph:
```
v (m/s)
| x
| |
| x x |
| x |
| x |
| x x |
|_____________________________ t (s)
2 4 6 8 10 12
```
Here, each "x" marks the corresponding points: (2, 25), (4, 45), (6, 65), (8, 75), (10, 75), (12, 75). Connect these points with lines to visualize the motion.
#### Part ii) Determine specific values from the graph:
(a) Initial velocity of the car:
The initial velocity is the car's velocity at the start of the time interval given in the table, which is at [tex]\( t = 2.0 \)[/tex] seconds.
From the table,
[tex]\[ \text{Initial velocity} = 25.0 \, \text{m/s} \][/tex]
(b) Acceleration of the car:
Acceleration is defined as the rate of change of velocity with respect to time. We can calculate it using the following formula:
[tex]\[ a = \frac{\Delta v}{\Delta t} \][/tex]
We will consider the acceleration between [tex]\( t = 2.0 \)[/tex] seconds and [tex]\( t = 6.0 \)[/tex] seconds:
[tex]\[ \Delta v = v(6.0 \, s) - v(2.0 \, s) = 65.0 \, \text{m/s} - 25.0 \, \text{m/s} = 40.0 \, \text{m/s} \][/tex]
[tex]\[ \Delta t = 6.0 \, \text{s} - 2.0 \, \text{s} = 4.0 \, \text{s} \][/tex]
[tex]\[ a = \frac{40.0 \, \text{m/s}}{4.0 \, \text{s}} = 10.0 \, \text{m/s}^2 \][/tex]
(c) Distance covered by the car in 9 seconds:
To find the distance covered in 9 seconds, we will use the area under the velocity-time graph up to [tex]\( t = 9.0 \)[/tex] seconds.
- From [tex]\( t = 2 \, \text{s} \)[/tex] to [tex]\( t = 6 \, \text{s} \)[/tex], the graph is a trapezoid.
- From [tex]\( t = 6 \, \text{s} \)[/tex] to [tex]\( t = 8 \, \text{s} \)[/tex], the graph is a trapezoid.
- From [tex]\( t = 8 \, \text{s} \)[/tex] to [tex]\( t = 9 \, \text{s} \)[/tex], the graph is a rectangle.
Let's break down the calculation:
1. Area from [tex]\( t = 2 \, \text{s} \)[/tex] to [tex]\( t = 6 \, \text{s} \)[/tex]:
[tex]\[ \text{Area} = \frac{1}{2} \times (v(2 \, \text{s}) + v(6 \, \text{s})) \times (\Delta t) \][/tex]
[tex]\[ = \frac{1}{2} \times (25.0 \, \text{m/s} + 65.0 \, \text{m/s}) \times 4.0 \, \text{s} = \frac{1}{2} \times 90.0 \, \text{m/s} \times 4.0 \, \text{s} = 180.0 \, \text{m} \][/tex]
2. Area from [tex]\( t = 6 \, \text{s} \)[/tex] to [tex]\( t = 8 \, \text{s} \)[/tex]:
[tex]\[ \text{Area} = \frac{1}{2} \times (v(6 \, \text{s}) + v(8 \, \text{s})) \times (\Delta t) \][/tex]
[tex]\[ = \frac{1}{2} \times (65.0 \, \text{m/s} + 75.0 \, \text{m/s}) \times 2.0 \, \text{s} = \frac{1}{2} \times 140.0 \, \text{m/s} \times 2.0 \, \text{s} = 140.0 \, \text{m} \][/tex]
3. Area from [tex]\( t = 8 \, \text{s} \)[/tex] to [tex]\( t = 9 \, \text{s} \)[/tex]:
[tex]\[ \text{Area} = v(8 \, \text{s}) \times (\Delta t) \][/tex]
[tex]\[ = 75.0 \, \text{m/s} \times 1.0 \, \text{s} = 75.0 \, \text{m} \][/tex]
Total Distance covered in 9 seconds:
[tex]\[ \text{Total Distance} = 180.0 \, \text{m} + 140.0 \, \text{m} + 75.0 \, \text{m} = 395.0 \, \text{m} \][/tex]
Thus, the distance covered by the car in the first 9 seconds is [tex]\( 395.0 \, \text{m} \)[/tex].
### Part 6a:
#### i) Uniform Motion:
Uniform motion refers to motion at a constant velocity, which means there is no acceleration. The graph of velocity versus time for uniform motion is a horizontal straight line.
Sketch:
```
v (m/s)
| _______
| |
| |
| |
|______|____________________ t (s)
```
#### ii) Uniform Acceleration:
Uniform acceleration refers to motion where the velocity increases linearly over time. This implies a constant rate of change of velocity, and the graph of velocity versus time is a straight line with a positive slope.
Sketch:
```
v (m/s)
|
|
|
|
| /
| /
|/__________________________ t (s)
```
### Part 6b:
The table provided shows the velocity of a car at different times:
```
\begin{tabular}{|l|l|l|l|l|l|l|}
\hline Timels & 2.0 & 4.0 & 6.0 & 8.0 & 10.0 & 12.0 \\
\hline V/mos -1 & 25.0 & 45.0 & 65.0 & 75.0 & 75.0 & 75.0 \\
\hline
\end{tabular}
```
#### Part i) Plot the velocity-time graph:
To plot the velocity-time graph, you can use the points provided:
Velocity-Time Graph:
```
v (m/s)
| x
| |
| x x |
| x |
| x |
| x x |
|_____________________________ t (s)
2 4 6 8 10 12
```
Here, each "x" marks the corresponding points: (2, 25), (4, 45), (6, 65), (8, 75), (10, 75), (12, 75). Connect these points with lines to visualize the motion.
#### Part ii) Determine specific values from the graph:
(a) Initial velocity of the car:
The initial velocity is the car's velocity at the start of the time interval given in the table, which is at [tex]\( t = 2.0 \)[/tex] seconds.
From the table,
[tex]\[ \text{Initial velocity} = 25.0 \, \text{m/s} \][/tex]
(b) Acceleration of the car:
Acceleration is defined as the rate of change of velocity with respect to time. We can calculate it using the following formula:
[tex]\[ a = \frac{\Delta v}{\Delta t} \][/tex]
We will consider the acceleration between [tex]\( t = 2.0 \)[/tex] seconds and [tex]\( t = 6.0 \)[/tex] seconds:
[tex]\[ \Delta v = v(6.0 \, s) - v(2.0 \, s) = 65.0 \, \text{m/s} - 25.0 \, \text{m/s} = 40.0 \, \text{m/s} \][/tex]
[tex]\[ \Delta t = 6.0 \, \text{s} - 2.0 \, \text{s} = 4.0 \, \text{s} \][/tex]
[tex]\[ a = \frac{40.0 \, \text{m/s}}{4.0 \, \text{s}} = 10.0 \, \text{m/s}^2 \][/tex]
(c) Distance covered by the car in 9 seconds:
To find the distance covered in 9 seconds, we will use the area under the velocity-time graph up to [tex]\( t = 9.0 \)[/tex] seconds.
- From [tex]\( t = 2 \, \text{s} \)[/tex] to [tex]\( t = 6 \, \text{s} \)[/tex], the graph is a trapezoid.
- From [tex]\( t = 6 \, \text{s} \)[/tex] to [tex]\( t = 8 \, \text{s} \)[/tex], the graph is a trapezoid.
- From [tex]\( t = 8 \, \text{s} \)[/tex] to [tex]\( t = 9 \, \text{s} \)[/tex], the graph is a rectangle.
Let's break down the calculation:
1. Area from [tex]\( t = 2 \, \text{s} \)[/tex] to [tex]\( t = 6 \, \text{s} \)[/tex]:
[tex]\[ \text{Area} = \frac{1}{2} \times (v(2 \, \text{s}) + v(6 \, \text{s})) \times (\Delta t) \][/tex]
[tex]\[ = \frac{1}{2} \times (25.0 \, \text{m/s} + 65.0 \, \text{m/s}) \times 4.0 \, \text{s} = \frac{1}{2} \times 90.0 \, \text{m/s} \times 4.0 \, \text{s} = 180.0 \, \text{m} \][/tex]
2. Area from [tex]\( t = 6 \, \text{s} \)[/tex] to [tex]\( t = 8 \, \text{s} \)[/tex]:
[tex]\[ \text{Area} = \frac{1}{2} \times (v(6 \, \text{s}) + v(8 \, \text{s})) \times (\Delta t) \][/tex]
[tex]\[ = \frac{1}{2} \times (65.0 \, \text{m/s} + 75.0 \, \text{m/s}) \times 2.0 \, \text{s} = \frac{1}{2} \times 140.0 \, \text{m/s} \times 2.0 \, \text{s} = 140.0 \, \text{m} \][/tex]
3. Area from [tex]\( t = 8 \, \text{s} \)[/tex] to [tex]\( t = 9 \, \text{s} \)[/tex]:
[tex]\[ \text{Area} = v(8 \, \text{s}) \times (\Delta t) \][/tex]
[tex]\[ = 75.0 \, \text{m/s} \times 1.0 \, \text{s} = 75.0 \, \text{m} \][/tex]
Total Distance covered in 9 seconds:
[tex]\[ \text{Total Distance} = 180.0 \, \text{m} + 140.0 \, \text{m} + 75.0 \, \text{m} = 395.0 \, \text{m} \][/tex]
Thus, the distance covered by the car in the first 9 seconds is [tex]\( 395.0 \, \text{m} \)[/tex].
We hope our answers were helpful. Return anytime for more information and answers to any other questions you may have. We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. We're dedicated to helping you find the answers you need at Westonci.ca. Don't hesitate to return for more.